

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Protective Coatings | Materials Selection | Cathodic Protection | >>>

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support | CorrCompass

Features and Functions of SPE-Compass

SPE-Compass is the only device-and-OS independent software tool on the market for the modeling and prediction of impact erosion by solid particles. Designers, engineers, consultants, maintenance and inspection personnel can quickly assess and quantify the extent of impact erosion on the remaining life of their components anytime, anywhere, on any device running any OS without the need to install or download anything.

SPE-Compass models the effects of the following parameters on the rate of metal wastage and wall thinning due to impact erosion by solid particles:

- Metallurgy of the Component
- Type of Erosive Particles:

Barite/Calcite

Clay/Silt

Copper Slag

Garnet Sand

Proppants

Quartz Sand

Sodium Chloride (Salt)

Steel Shot

- Particle Impact Velocity (m/s)
- Particle Impact Angle
- Particle Mass Rate (μg/m².s)

The outputs from SPE-Compass include:

• The erosion rate, nm/y

- Plot showing the erosion rate as a function of impact angle
- Plot showing the erosion rate as a function of impact velocity

Overview and Application Examples of SPE-Compass

Figures below show the screen shots of SPE-Compass. There are two modules in SPE-Compass, one is for the general industry and the other is specifically for the oil and gas industry.

Figure 1 Overview of SPE-Compass

Users of SPE-Compass start by selecting the material (Figure 2) and erosive particle from the dropdown lists (Figure 3) for the general

industry. The following materials are included in the software database. More materials are progressively added into the software database.

Carbon Steel

Brass

Duplex SS

SS304

SS316

Inconel

Aluminium

AA6063

Cadmium Plating

Nickel

Electroless Nickel Coating

Electroplated Nickel Coating

Zinc

Hot-Dip Galvanized Zinc Coating

Hot-Dip Galvanized Zn-5Al Coating

Hot-Dip Galvanized Zn-55Al Coating

Hot-Dip Galvanized Zn-6Al-3Mg Coating

Hot-Dip Galvanized Zn-3.5Al-3Mg Coating

Hot-Dip Galvanized Zn-2.5Al-3Mg Coating

Electro-Galvanized Zinc Coating

Thermal Sprayed Zinc Coating

Sherardized Zinc Coatings

Mechanically Plated Zinc Coatings

DC-05: Tungsten Carbide

CS-10: Tungsten Carbide

CR-37: Tungsten Carbide

95% Al₂O₃: Aluminium Oxide

99.5% Al₂O₃: Aluminium Oxide

PSZ Ceramic: Zirconia

ZrO2-Y3 Ceramic: Zirconia

SiC: Silicon Carbide

Si3N4: Silicon Nitride

TiB2B₂: Titanium Diboride

B4C: Boron Carbide

SiSiC: Ceramic – Silicon Carbide

GRP/Epoxy

GRP/Vinyl Ester

HDPE

Figure 2 Selection of Materials for Sand Erosion Assessment

Equipment ID	XYZ#123				
Material	Carbon Steel 🗸				
Erosive Particle	Quartz Sand 🗸				
Particle Impact Velocity	Quartz Sand Barite				
Particle Impact Angle	Calcite Clay/Silt				
Particle Mass Rate	Copper Slag Garnet Sand				
Erosion Rate	Metal Chip				
Thickness Loss, nm/y	Proppants (Uncrushed) Sodium Chloride (Salt)				
120,000	Steel Shot				
110,000					
100,000					
90,000					
80.000					
70.000					
60.000					
50,000					
40.000					
30,000					
20,000					
10,000					
10,000					
0 10 20 30	40 50 60 70 80 90 100				
	Impact Angle, deg				

SPE-Compass®: Solid Particle Erosion Modeling and Prediction	
--	--

Figure 3 Selection of Erosive Particles for Erosion Modeling in SPE-Compass

Version 11.3.11

Figure 4 below shows the plot options in SPE-Compass. Users of SPE-Compass software can choose to plot the erosion rate as a function of impact velocity, or erosion rate as a function of particle mass rate.

SPE-Compass[®]: Solid Particle Erosion Modeling and Prediction

Version 11.3.11

SPE-Compass®: Solid Particle Erosion Modeling and Prediction

Version 11.3.11

Equipment ID	Pipe XYZ				
Design Data		Flow Data			
Material	Carbon Steel	~	Operating Pressure	bar	120.00
Component	Тее	~	Operature Temperature	°C	42.00
			Oil Rate at Standard Condition	m3/d	500.000
— Area of e	rosion		Water Rate at Standard Condition	m3/d	20.000
			Gas Rate at Standard Condition	m3/d	5.000e+005
	_ Blind zone		Oil Density (ρ_o)	kg/m3	800.000
			Water Density (ρ_w)	kg/m3	1000.000
			Gas Density (ρ_g)	kg/m3	0.700
1	X		Gas Molecular Weight (MW)	kg/kmol	19.000
	/		Gas Compressibility Factor (Z)		0.900
			Gas Viscosity	Pa.s	1.00e-005
Pipe Diameter (D)	m	0.1245	Oil Viscosity	Pa.s	1.00e-004
			Water Viscosity	Pa.s	1.00e-003
			API Erosional Velocity Factor (C)	(kg/m) ^{0.5} /s	152
		Prediction Results			
			Mixture Velocity	m/s	4.384
Components in one plane with straight upstream pipe section <10xD \checkmark		API Erosional Velocity Limit	m/s	13.942	
Erosive Agent	Quartz Sand	~	Mixture velocity is below the API erosional velocity limit.		
Particle Concentration	%wt	5.000	Erosion Rate (relative)	mm/ton	2.023e-4
Particle Diameter	μm	150	Erosion Rate (annual)	mm/year	3.008

Figure 5 SPE-Compass models the effect of sand concentration and diameter on the thickness loss caused by sand erosion

SPE-Compass®: Solid Particle Erosion Modeling and Prediction			Version 11.3.11			
Equipment ID	Pipe XYZ					
Design Data			Flow D	Flow Data		
Material	Carbon Steel	~	Operating Pressure	bar	120.00	
Component	Тее	~	Operature Temperature	°C	42.00	
			Oil Rate at Standard Condition	m3/d	500.000	
— Area of e	rosion		Water Rate at Standard Condition	m3/d	20.000	
			Gas Rate at Standard Condition	m3/d	5.000e+005	
Blind zone			Oil Density (ρ _o)	kg/m3	800.000	
			Water Density (ρ_w)	kg/m3	1000.000	
			Gas Density (ρ _g)	kg/m3	0.700	
1	X		Gas Molecular Weight (MW)	kg/kmol	19.000	
	/		Gas Compressibility Factor (Z)		0.900	
			Gas Viscosity	Pa.s	1.00e-005	
Pipe Diameter (D)	m	0.1245	Oil Viscosity	Pa.s	1.00e-004	
			Water Viscosity	Pa.s	1.00e-003	
			API Erosional Velocity Factor (C)	<mark>(kg/m)^{0.5}/s</mark>	152	
			Prediction	Results		
			Mixture Velocity	m/s	4.384	
Components in one plane with straight upstream pipe section <10xD 💙		API Erosional Velocity Limit	m/s	13.942		
Erosive Agent	Quartz Sand	~	Mixture velocity is below the API erosional velocity limit.			
Particle Concentration	%wt	5.000	Erosion Rate (relative)	mm/ton	2.023e-4	
Particle Diameter	μm	150	Erosion Rate (annual)	mm/year	3.008	

Figure 6 SPE-Compass models the effect of sand concentration and diameter on the thickness loss caused by sand erosion

SPE-Compass®: Solid Particle Erosion Modeling and Prediction				Version 11.3.11	
Equipment ID	Pipe XYZ				
Design Data		Flow [Flow Data		
Material	Carbon Steel	~	Operating Pressure	bar	120.00
Component	Тее	~	Operature Temperature	°C	42.00
			Oil Rate at Standard Condition	m3/d	500.000
Area of erosion			Water Rate at Standard Condition	m3/d	20.000
D			Gas Rate at Standard Condition	m3/d	5.000e+005
	Blind zone		Oil Density (ρ _o)	kg/m3	800.000
D		Water Density (ρ_w)	kg/m3	1000.000	
		Gas Density (ρ _g)	kg/m3	0.700	
1			Gas Molecular Weight (MW)	kg/kmol	19.000
	/		Gas Compressibility Factor (Z)		0.900
			Gas Viscosity	Pa.s	1.00e-005
Pipe Diameter (D)	m	0.1245	Oil Viscosity	Pa.s	1.00e-004
			Water Viscosity	Pa.s	1.00e-003
			API Erosional Velocity Factor (C)	(kg/m) ^{0.5} /s	152
		Prediction Results			
			Mixture Velocity	m/s	4.384
Components in one plane	with straight upstrea	m pipe section <10xD 🗸	API Erosional Velocity Limit	m/s	13.942
Single component with straight upstream pipe section $\geq 10xD$		Mixture velocity is below the API erosional velocity limit.			
Con	nponents out of plan	ne	Erosion Rate (relative)	mm/ton	2.023e-4
Particle Diameter	μm	150	Erosion Rate (annual)	mm/year	3.008

Figure 7 SPE-Compass models the effect of pipe geometry on the thickness loss caused by sand erosion

The powerful applications of SPE-Compass are truly unlimited in engineering design, erosion resistant materials evaluation and selection,

remaining life prediction, process optimization, trouble-shooting and failure analysis.

Click here to contact us for licensing details and experience the power of SPE-Compass.

SPE-Compass, giving you the right directions in Sand Erosion Prediction and Assessment

Home | Contact Us | PDF

Copyright © 1995-2023. WebCorr Corrosion Consulting Services. All rights reserved.

8