



Corrosion Modeling Software and Corrosion Prediction Software

## **CP-Compass-Concrete®: Design Calculation for Cathodic Protection of Reinforced Concrete Structure**

The Ultimate Software Solutions to Costly Concrete Corrosion

Version 9.21



## Overview of CP-Compass-Concrete - Design Calculation for Cathodic Protection of Reinforced Concrete Structures

CP-Compass-Concrete is the only device and OS independent software tool on the market for design calculation for cathodic protection of reinforced concrete structures. Designers, architects, engineers, consultants, operation personnel, maintenance and inspection engineers can quickly determine the cathodic protection current requirement based on the current condition of the RC structure (Figure 1 below), anytime, anywhere, on any device running any OS without the need to install or download anything. CP-Compass-Concrete also predicts the effectiveness of cathodic protection and the minimum cathodic protection polarization required to reduce the



corrosion rate to a level that can meet the design life of the RC structure.

Impressed current cathodic protection (ICCP) can be applied to reinforced concrete structures exposed to atmosphere, buried in soil, or submerged in water (Figure 1). Galvanic anode cathodic protection can be applied to the buried or submerged reinforced concrete structures (Figure 2).

Using CP-Compass-Concrete is as easy as 1-2-3.

- (1) Enter the design data.
- (2) Select the service environment.
- (3) Review the design calculation results.

Figures below show the screen shots of CP-Compass-Concrete.

Design Calculation for Impressed Current Cathodic Protection of Reinforced Concrete Structures Structure Location/ID Building ABC at XYZ 28-Mar-2015 20.000 Design life Rebar diameter years 50 mm Age of structure years 15.000 Concrete cover thickness 35.000 mm Code allowable maximum crack width 0.300 Water cement ratio 0.500 mm w/c Concrete compressive strength MPa 40.000 Temperature of concrete °C 10.00 Concrete tensile splitting strength MPa 4.000 Concrete electrical resistivity Ω.cm 20,000 Service environment for assessment of carbonation if applicable (select from options A to D) N/A Concrete inside buildings with low air humidity; Dry or permanently wet Α Concrete permanently submerged in water Concrete surfaces subject to long-term water contact; Wet, rarely dry В Many foundations Concrete inside buildings with moderate or high air humidity; Moderate humidity C External concrete sheltered from rain Cyclic wet and dry Concrete surfaces subject to water contact D Service environment for assessment of chloride-induced corrosion if applicable (select from options A to F) D Moderate humidity Concrete surfaces exposed to airborne chlorides Α

Swimming pools; Concrete exposed to industrial waters containing chlorides

Parts of bridges exposed to spray containing chlorides. Pavements, Car park slabs

Structures near to or on the coast

Parts of marine structures

В

С

D

Galvanic Anode CP

ICCP

Wet, rarely dry

Cyclic wet and dry

Exposed to airborne salt but not in

direct contact with sea water

Permanently submerged in seawater

| remaining submerged in sedirate.                                                               | Tares of marine strategies |                 |                                                                                                                                                                                                                                                      |        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|
| Tidal, splash and spray zones                                                                  | Parts of marine structures |                 |                                                                                                                                                                                                                                                      |        |  |  |  |  |  |  |
| Cathodic Protection Design                                                                     |                            |                 |                                                                                                                                                                                                                                                      |        |  |  |  |  |  |  |
| Design current density, mA/m2                                                                  | BS EN ISO 12696 🕶          |                 | Min. CP polarization required to meet design life mV                                                                                                                                                                                                 | 60.51  |  |  |  |  |  |  |
| Steel to concrete surface area ratio                                                           |                            | 1.700           | Protection criteria by polarization in this design mV                                                                                                                                                                                                | 100.00 |  |  |  |  |  |  |
| Concrete surface area (one zone)                                                               | m2                         | 500.000         | Predicted corrosion reduction factor by CP Vcorr/V                                                                                                                                                                                                   | ср 60  |  |  |  |  |  |  |
| Protection current required (one Zone)                                                         | А                          | 8.500           | Predicted corrosion rate under CP, Vcp mm/y                                                                                                                                                                                                          | 0.0003 |  |  |  |  |  |  |
| Resistance of anode conductors/cables/others                                                   | Ω                          | 0.400           | Remarks                                                                                                                                                                                                                                              |        |  |  |  |  |  |  |
| Total circuit resistance (one Zone)                                                            | Ω                          | 0.828           | Prestressing steel may be sensitive to hydrogen embrittlement and, due to the tensile loading, failure can be catastrophic. It is essential that caution is exercise any application of cathodic protection to prestressed elements. The steel/concr |        |  |  |  |  |  |  |
| Rectifier Output Rating                                                                        | Safety Factor, %           | 50              |                                                                                                                                                                                                                                                      |        |  |  |  |  |  |  |
| Rectifier voltage 11 V                                                                         | Current                    | 9 A             | potential should be kept below the potential limit of -900 mV vs. Ag/AgCl/0.5 M                                                                                                                                                                      |        |  |  |  |  |  |  |
| Anode Selection and Installation                                                               |                            |                 | (BS EN ISO 12696)                                                                                                                                                                                                                                    |        |  |  |  |  |  |  |
| Anode system meeting the design life should be selecturrent distribution to the rebar network. | ted and installed to pro   | ovide a uniforn | n                                                                                                                                                                                                                                                    |        |  |  |  |  |  |  |

CP-Compass-Concrete Version 9.21 © 1995 - 2020 WebCorr Corrosion Consulting Services

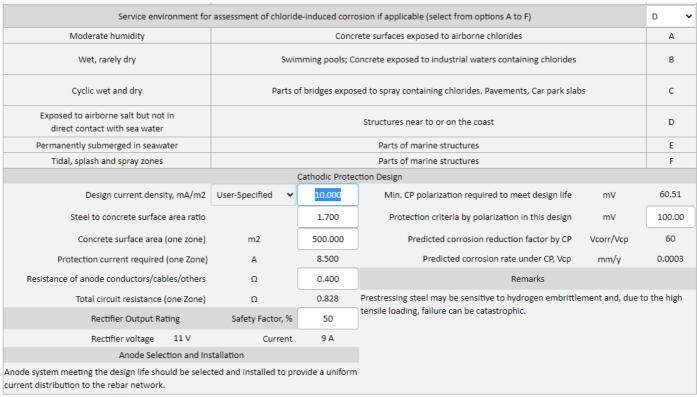
Figure 1 Concrete-Compass Predicts the rate of Concrete corrosion and the remaining life of RC structures.

## Design Calculation for Galvanic Anode Cathodic Protection of Buried or Immersed Concrete Structures

| Client:                                                          | Enter client info      |                       |                                | PO#201706    |  |  |  |
|------------------------------------------------------------------|------------------------|-----------------------|--------------------------------|--------------|--|--|--|
| Project:                                                         | Enter project title fo | 28-Mar-2015           |                                |              |  |  |  |
| Design Life, yrs                                                 | 20                     |                       | Anode Material                 | Zn 🕶         |  |  |  |
| Exposure environemnt                                             |                        | Buried in soil 🔻      | Anode Potential                | -1.10 V(CSE) |  |  |  |
| Rebar diameter, mm                                               |                        | 20.00                 | Driving Voltage                | 0.250 V      |  |  |  |
| Concrete cover thickness, mm                                     |                        | 35.00                 | Anode Length (packaged), mm    | 1,549        |  |  |  |
| Concrete surface area (one Zone), m2                             |                        | 300.000               | Anode Diameter (packaged), mm  | 152          |  |  |  |
| Steel to concrete surface area ratio                             |                        | 1.700                 | Anode Weight (Bare), kg        | 14.500       |  |  |  |
| Soil resistivity, Ω.cm                                           |                        | 1,500                 | Anode Consumption Rate, kg/A-y | 10.76        |  |  |  |
| Design Current Density, mA/m2                                    |                        | 3.0                   | Current Efficiency             | 0.90         |  |  |  |
| Protection Potential, V(CSE)                                     |                        | -0.850                | Utilization Factor             | 0.85         |  |  |  |
| CP Current and Anode Weight Requirements                         |                        |                       |                                |              |  |  |  |
| CP Current Require                                               | d                      | 1.530 A               | Total Anode Weight Required    | 430 kg       |  |  |  |
|                                                                  |                        |                       | Number of Anode by Weight      | 29.7         |  |  |  |
| Anode Current Output                                             |                        | Vertical Installation |                                |              |  |  |  |
| Anode to Earth Resi                                              | stance                 | 5.242 Ω               | Single Anode Current Output    | 47.696 mA    |  |  |  |
| Anode Burial Depth                                               |                        | 200 cm                | Number of Anodes by Current    | 32.1         |  |  |  |
| Number of Anodes                                                 | Selected               | 32                    | Anode Life Calculation         | 22 yrs       |  |  |  |
| The number of anodes selected meets the design life requirement. |                        |                       |                                |              |  |  |  |

CP-Compass-Concrete Version 9.21, © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 2 CP-Compass-Concrete Design calculation for galvanic anode cathodic protection of reinforced concrete structures.


CP-Compass-Concrete complies with applicable international standards and relevant industry best practices such as BS EN ISO 12696, NACE SP 0290, NACE SP 0187, and AS 2832-5. Users of CP-Compass-Concrete simply select the applicable standard from the dropdown list (Figure 3) and the software modeling engine will determine the optimized design current density based on the assessment of the current condition of the RC structure including the age, design

parameters, exposure environment, service environment, and the remaining life. The software is also flexible, giving users the option to override the standards and specify the design current density (Figure 4).

| Service environment for                                                                       | assessment of chlorid                                                             | e-induced corr  | osion if applicable (select from options A to F)                                                                                                                                                                                                                                                                                        | С       | ,      | ~ |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|---|
| Moderate humidity                                                                             | Concrete surfaces exposed to airborne chlorides                                   |                 |                                                                                                                                                                                                                                                                                                                                         |         | А      |   |
| Wet, rarely dry                                                                               | Swimming pools; Concrete exposed to industrial waters containing chlorides        |                 |                                                                                                                                                                                                                                                                                                                                         |         | В      |   |
| Cyclic wet and dry                                                                            | Parts of bridges exposed to spray containing chlorides. Pavements, Car park slabs |                 |                                                                                                                                                                                                                                                                                                                                         |         | С      |   |
| Exposed to airborne salt but not in direct contact with sea water                             | Structures near to or on the coast                                                |                 |                                                                                                                                                                                                                                                                                                                                         |         | D      |   |
| Permanently submerged in seawater                                                             | Parts of marine structures                                                        |                 |                                                                                                                                                                                                                                                                                                                                         |         | Е      |   |
| Tidal, splash and spray zones                                                                 | Parts of marine structures                                                        |                 |                                                                                                                                                                                                                                                                                                                                         |         | F      |   |
|                                                                                               |                                                                                   | Cathodic Prote  | ction Design                                                                                                                                                                                                                                                                                                                            |         |        |   |
| Design current density, mA/m2                                                                 | BS EN ISO 12696 🗸                                                                 |                 | Min. CP polarization required to meet design life                                                                                                                                                                                                                                                                                       | mV      | 60.51  |   |
| Steel to concrete surface area ratio                                                          | BS EN ISO 12696<br>NACE SP 0290                                                   | 1.700           | Protection criteria by polarization in this design                                                                                                                                                                                                                                                                                      | mV      | 100.00 |   |
| Concrete surface area (one zone)                                                              | AS 2832-5                                                                         | 500.000         | Predicted corrosion reduction factor by CP Vcc                                                                                                                                                                                                                                                                                          | orr/Vcp | 60     |   |
| Protection current required (one Zone)                                                        | User-Specified<br>A                                                               | 8.500           | Predicted corrosion rate under CP, Vcp r                                                                                                                                                                                                                                                                                                | mm/y    | 0.0003 |   |
| Resistance of anode conductors/cables/others                                                  | Ω                                                                                 | 0.400           | Remarks                                                                                                                                                                                                                                                                                                                                 |         |        |   |
| Total circuit resistance (one Zone)                                                           | Ω                                                                                 | 0.828           | Prestressing steel may be sensitive to hydrogen embrittlement and, due to the h tensile loading, failure can be catastrophic. It is essential that caution is exercised any application of cathodic protection to prestressed elements. The steel/concrepotential should be kept below the potential limit of -900 mV vs. Ag/AgCI/0.5 M |         |        |   |
| Rectifier Output Rating                                                                       | Safety Factor, %                                                                  | 50              |                                                                                                                                                                                                                                                                                                                                         |         |        |   |
| Rectifier voltage 11 V                                                                        | Current                                                                           | 9 A             |                                                                                                                                                                                                                                                                                                                                         |         |        |   |
| Anode Selection and In:                                                                       | Anode Selection and Installation                                                  |                 |                                                                                                                                                                                                                                                                                                                                         |         |        |   |
| Anode system meeting the design life should be selecturent distribution to the rebar network. | ted and installed to pro                                                          | ovide a uniform | ı                                                                                                                                                                                                                                                                                                                                       |         |        |   |

CP-Compass-Concrete Version 9.21 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 3 CP-Compass-Concrete complies with international standards for cathodic protection of reinforced concrete structures.



CP-Compass-Concrete Version 9.21 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 4 CP-Compass-Concrete gives users the option to override the standards and specify the design current density.

The predictive engine in CP-Compass-Concrete also assesses the existing condition of the concrete structure and determines the minimum CP polarization required to meet the design or remaining life of the RC structure. As shown in Figures 1 & 4 above, for the 15-year old RC structure, the minimum CP polarization required to meet the design life of 50 years (or the remaining life of 35 years) is 60.51 mV. The protection criteria by design is 100 mV. The corrosion reduction factor at the 100 mV CP polarization is 60 and the corrosion rate of the reinforcement under cathodic protection is 0.0003 mm/y (0.3 um/y). Cautionary remarks pertaining to hydrogen embrittlement of prestressing steels are also provided.

The powerful applications of CP-Compass-Concrete are truly unlimited in engineering design, concrete corrosion prediction and modeling, cathodic protection design and optimization, and remaining life prediction of RC structures under the various service environments.

Click here to contact us for licensing details and experience the power of CP-Compass-Concrete.

## CP-Compass-Concrete, giving you the right directions in Design Calculation for Cathodic Protection of RC Structures

Home | Contact Us | PDF

Copyright © 1995-2021. All rights reserved.