

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Protective Coatings | Materials Selection | Cathodic Protection | >>>

Corrosion Modeling Software and Corrosion Prediction Software Series GC-Compass®: A Software Tool for Galvanic Corrosion Prediction and Materials Compatibility Assessment The Ultimate Software Solution to Costly Galvanic Corrosion Version 12.4 (6,555 Galvanic Couples)

No USB dongles No installation No Browser Plug-ins

Contact Us for Licensing Details

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support | CorrCompass

Overview and Application Examples of GC-Compass: Software Tool for Galvanic Corrosion Prediction and Materials Compatibility Assessment

GC-Compass is the only device and OS independent software tool on the market for the prediction of galvanic corrosion and assessment of materials galvanic compatibility. The current version has 6,555 galvanic couples covering every possible coupling of engineering materials in use today. Designers, engineers, architects, consultants, or maintenance and inspection personnel can quickly assess and quantify the impact of galvanic coupling of dissimilar metals, alloys, and CRFP composites on the remaining life of their components or systems anytime, anywhere, on any device running any OS without the need to install or download anything.

The NACE/ASTM G193 standard defines corrosion as "the deterioration of a material, usually a metal, that results from a chemical or electrochemical reaction with its **environment**."

From the standard definition of corrosion above, it is clear that the environment plays a critical role in all types of corrosion including galvanic corrosion. At the design stage, the design engineer has options in materials selection to avoid corrosion of the equipment or structure in a specified service environment. At the operating or in-service stage, the operator has the option to monitor the changes in the service environment (e.g. temperature) that affects corrosion including galvanic corrosion.

GC-Compass is an essential software tool for design engineers and facility owners and operators for modeling and prediction of galvanic corrosion and assessment of material compatibility in actual service environments. Unlike other galvanic corrosion prediction software based on the static "curve crossing" methodology valid only for the controlled laboratory conditions under which the polarization curves were measured for a very limited number of alloys in artificial seawater at 25°C, GC-Compass utilizes machine learning and cloud computing to accurately model the effects of **temperature**, water **velocity**, cathode to anode **area ratio**, and other service **environment variables** (sea water, 3.5%NaCl solutions, fresh water, tap water, distilled water, marine atmosphere, industrial atmosphere) on the rate of galvanic corrosion and material compatibility for **over six thousand five hundred (6,500)** metal-to-metal and metal-to-CFRP composite galvanic couples. GC-Compass also predicts the galvanic series and the open circuit potentials (free corrosion potentials) of many metals and alloys in selected environments. Input parameters in GC-Compass include:

- the service environment (seawater, NaCl solution, tap water, frsh water, distilled water, de-ionized water, marine atmosphere, industrial atmosphere)
- water velocity
- temperature
- materials in the anode-cathode galvanic couple
- the cathode-to-anode area ratio
- the effective anode thickness

GC-Compass models the effects of the above input parameters and predicts the following:

- the galvanic current density in $\mu\text{A/cm}^2$
- the galvanic corrosion rate in mm/y
- the galvanic factor (acceleration factor due to galvanic corrosion)
- the anode remaining life in years
- the anode self-corrosion current density in μ A/cm²
- the anode self-corrosion rate in mm/y
- the material compatibility class
- polarity reversal for some galvanic couples when service temperature exceeds certain thresholds
- galvanic series in selected environments such as seawater, tap water, neutral soils, oil and gas production wells, acids and caustics.

Users of GC-Compass start by selecting the dissimilar metal couple from the dropdown list. The database has

over six thousand five hundred (6,500) metal-to-metal and metal-to-CFRP composite galvanic couples. The current database includes the following groups of alloys and CFRP composite with over 6,500 galvanic couples: Aluminum and Its Alloys Cadmium and Its Alloys Carbon Steels and Low Alloy Steels Copper and Copper Alloys Graphite and CFRP Lead and Its Alloys Magnesium and Its Alloys Nickel and Its Alloys Precious Metals and Alloys Stainless Steels and Alloys Tin and Its Alloys Titanium and Its Alloys Zinc and Its Alloys If you cannot find the galvanic couple of your interest in the list, do let us know through the Contact Us link and we will conduct the necessary tests to generate the required data for inclusion in the software, free of charge for licensed users of GC-Compass (you may have to provide us with the material specimens if they are not readily available).

Figures below show the screenshots of GC-Compass.

GC-Compass®: Galvanic Corrosion Prediction and Galvanic Compatibility Assessment				
	for Metals, Alloys, and CFRP Comp	oosites Ver. 12.4.12 (6,555 Galvanio	Couples)	
Service Environment:	Marine Atmosphere 🗸	Water Velocity (m/s):		
Select Material	A and Material B in the Galvanic Couple	e Temperature (°C):	25.00	
Matorial A:	Aluminum and Its Alloys	Material Pr	Stainless Steels and Alloys	~
Material A.	АА2024(Crб+) 🗸	Material D.	13-8PH	~
	AA2024(Cr6+) is the Anode.		13-8PH is the Cathode.	
E	Effective Cathode to Anode Area Ratio:	1.000		
	Effective Thickness of Anode (mm):	2.000		
	Predicted Galvanic Current (μ A/cm2):	18.200	Electrolyte	
	Predicted Galvanic Factor:	400.400		
Pre	edicted Anode Corrosion Rate (mm/y):	0.200	e Metal 2	
Pr	edicted Remaining Service Life (years):	9.990	test tetat	_
	Galvanic Compatibility Class:	Class II: Borderline	Anode Cathode	
Gal	vanic Series in Selected Environments:	CO2-Saturated Brine		~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	-253	
Metal B	5Cr steel 🗸	Open Circuit Potential, mV (SCE)	-641	
	Potential difference	between Copper and 5Cr steel, mV	388	
C	opper is cathodic to 5Cr steel in CO2-Sa	turated Brine.	Very High Galvanic Risk	

Copper is cathodic to 5Cr steel in CO2-Saturated Brine.

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 1 GC-Compass Predicts Galvanic Corrosion Rate and Galvanic Compatibility Class for over 6,500 Galvanic Couples.

	GC-Compass®: Galvanic Corrosion Pr	ediction and Galvanic Compatibility	Assessment	
	for Metals, Alloys, and CFRP Comp	osites Ver. 12.4.12 (6,555 Galvanio	: Couples)	_
Service Environment:	Marine Atmosphere 🗸	Water Velocity (m/s):		
Select Material	A and Material B in the Galvanic Couple	Temperature (°C):	25.00	
Matorial A:	Aluminum and Its Alloys	Matarial Pr	Stainless Steels and Alloys	~
Material A.	AA2024(Cr6+) ~	Material D.	13-8PH	~
	Aluminum		13-8PH is the Cathode.	
E	AA1100	1.000		
	AA2024	2.000		
	AA2024(Cr3+)	18.200	Electrolyte	
	AA2024(Cr6+)	400.400		
Pre	AA2050-T3	0.200	Metal 1 Metal 2	
Pr	AA2050-T852	9.990	<u> </u>	
	AA2060-T8	Class II: Borderline	Anode Cathode	
Cal	AA2195	CO2 Saturated Prine		
Gai	AA2219-T87	CO2-Saturated bille		×.,
Metal A	AA5083	Open Circuit Potential, mV (SCE)	-253	
Metal B	AA6061	Open Circuit Potential, mV (SCE)	-641	
	Anodized AA6061	between Copper and 5Cr steel, mV	388	
C	AA6061-T651	urated Brine.	Very High Galvanic Risk	
	AA7050		100 100	
	Anodized AA7050			
	AA7075		100 BB	
5	A360 (Die Cast)			
	and the second second			
and the second second			State And	
			and the second second	
and the second	1		a source	
	The second se		S. C. S. S. S.	
			Contraction of the second second	

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 2 GC-Compass Predicts Galvanic Corrosion and Galvanic Compatibility Class for over 6,500 Metals, Alloys, and CFRP Composite Galvanic Couples.

After selecting the galvanic couple, the next step is to select the environment relevant to your application. The dropdown list in Figure 3 below has 7 options from seawater to industrial atmosphere, representing the natural environments. If your process fluids are not listed in the dropdown menu, you should choose one of the waters that closely matches the chloride level in your process fluids. WebCorr can customize GC-Compass for your specific process fluids and alloys used in any industry from general engineering to wafer fabrication. A customized version of GC-Compass software can be used to monitor galvanic corrosion of your equipment or facilities in real-time.

GC-Compass®: Galvanic Corrosion Prediction and Galvanic Compatibility Assessment			
	for Metals, Alloys, and CFRP Comp	oosites Ver. 12.4.12 (6,555 Galvanio	Couples)
Service Environment:	Marine Atmosphere 🗸	Water Velocity (m/s):	
Select Material	Sea Water	Temperature (°C):	25.00
	3.5% NaCl Solutions		Stainless Steels and Alloys
Material A:	Fresh Water	Material B:	12 00
	Tap Water		13-8PH •
	Distilled Water		13-8PH is the Cathode.
E	Marine Atmosphere	1.000	
	Industrial Atmosphere	2.000	
	Predicted Galvanic Current (µA/cm2):	18.200	Electrolyte
	Predicted Galvanic Factor:	400.400	
Pre	edicted Anode Corrosion Rate (mm/y):	0.200	Metal 1 Metal 2
Pr	edicted Remaining Service Life (years):	9.990	
	Galvanic Compatibility Class:	Class II: Borderline	Anode Cathode
Gal	vanic Series in Selected Environments:	CO2-Saturated Brine	~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	-253
Metal B	5Cr steel 🗸	Open Circuit Potential, mV (SCE)	-641
	Potential difference	between Copper and 5Cr steel, mV	388
C	opper is cathodic to 5Cr steel in CO2-Sat	turated Brine.	Very High Galvanic Risk

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 3 GC-Compass Models the Effects of Seven Types of Environments on Galvanic Corrosion and Galvanic Compatibility Class.

The next step is to enter the water velocity and temperature. Water velocity and temperature are critical factors that influence the rate of corrosion. Some galvanic couples such as zinc-steel and aluminum-steel will reverse the polarity at certain temperatures, meaning the usual anodes (zinc and aluminum) have become the cathodes with respect to steel when the temperature exceeds certain threshold value, as shown in Figure 4 below. At temperatures above 60°C, zinc is cathodic to steel, accelerating the corrosion of steel instead of protecting it! Note that it is always the anode that suffers accelerated corrosion due to galvanic coupling. GC-Compass is the only software on the market that models the effect of water velocity and temperature on galvanic corrosion and predicts the polarity reversal when temperature changes.

	GC-Compass®: Galvanic Corrosion P	rediction and Galvanic Compatibility	Assessment
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvanio	: Couples)
Service Environment:	Tap Water 🗸 🗸	Water Velocity (m/s):	0.000
Select Material	A and Material B in the Galvanic Couple	e Temperature (°C):	60.00
Material A:	Zinc and Its Alloys	Material R:	Carbon Steels and Low Alloy Stee ${\color{black} \!$
Material A.	Zinc 🗸	Wateria D.	Carbon Steel 🗸
	Zinc is the Anode.		Carbon Steel is the Cathode.
1	Effective Cathode to Anode Area Ratio:	1.000	
	Effective Thickness of Anode (mm):	2.000	
	Predicted Galvanic Current (µA/cm2):	n/a	Electrolyte
	Predicted Galvanic Factor:	Seek expert advice!	Name 1
Pro	edicted Anode Corrosion Rate (mm/y):	Polarity is now reversed.	e'
Pr	edicted Remaining Service Life (years):	Anode is now protected!	
	Galvanic Compatibility Class:	n/a	Anode Cathode
Gal	vanic Series in Selected Environments:	CO2-Saturated Brine	~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	-253
Metal B	5Cr steel 🗸	Open Circuit Potential, mV (SCE)	-641
	Potential difference	e between Copper and 5Cr steel, mV	388
C	opper is cathodic to 5Cr steel in CO2-Sa	turated Brine.	Very High Galvanic Risk

GC-Compass models the effects of temperature and the cathode to anode area ratio on the corrosion rate of the anodic member of the couple and the galvanic compatibility. Other galvanic corrosion prediction software based on the static "curve crossing" methodology simply fail to model the critical effects of water velocity, temperature, and the cathode-to-anode area ratio on the galvanic corrosion rate and galvanic compatibility. The outputs from the GC-Compass software include:

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

• the predicted corrosion rate of the anode metal in mm per year (mm/y).

Figure 4 GC-Compass Predicts the Polarity Reversal for Zinc in Zn-Carbon Steel Couple.

- the remaining life of the component assembly based on the corrosion rate of the anodic member of the galvanic couple.
- the galvanic compatibility class based on the quantitative evaluation of the acceleration factor due to
 galvanic effect. Class I means the materials are galvanically compatible with no significant increase in
 the corrosion rate of the anode metal; Class II means borderline condition where galvanic corrosion of
 the anode metal is expected but the acceleration in corrosion is moderate; Class III means the materials
 are galvanically incompatible in the selected environment at the specified temperature. Severe galvanic
 effect is expected to cause rapid failure of the anode metal.
- polarity reversal for certain galvanic couples when service temperature exceeds certain thresholds.

GC-Compass®: Galvanic Corrosion Prediction and Galvanic Compatibility Assessment				
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvanio	: Couples)	
Service Environment:	Tap Water 🗸	Water Velocity (m/s):	0.000	
Select Material	A and Material B in the Galvanic Couple	e Temperature (°C):	60.00	
Material A:	Carbon Steels and Low Alloy Steel: 🗸	Material B:	Stainless Steels and Alloys	~
Wateria A.	Carbon Steel 🗸	Wateria D.	SS316	~
	Carbon Steel is the Anode.		SS316 is the Cathode.	
	Effective Cathode to Anode Area Ratio:	0.000		
	Effective Thickness of Anode (mm):	2.000		
Predicted Ar	node Self-Corrosion Current (µA/cm2):	43.271	Electrolyte	
	Predicted Galvanic Factor:	No galvanic effect.		
Predict	ed Anode Self-Corrosion Rate (mm/y):	0.506	Metal 1 Metal 2	
Pr	edicted Remaining Service Life (years):	3.956	tech Ortek	_
	Galvanic Compatibility Class:	n/a	Anode Cathode	
Gal	vanic Series in Selected Environments:	CO2-Saturated Brine		~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	-253	
Metal B	5Cr steel 🗸	Open Circuit Potential, mV (SCE)	-641	
	Potential difference	e between Copper and 5Cr steel, mV	388	
C	opper is cathodic to 5Cr steel in CO2-Sa	turated Brine.	Very High Galvanic Risk	

Figure 5 GC-Compass Models the Effects of Temperature and Cathode to Anode Area Ratio on Galvanic Corrosion and Galvanic Compatibility Class.

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

GC-Compass is not only immensely useful for the prediction of galvanic corrosion and assessment of galvanic compatibility of metals and alloys, it is also equally powerful when used for the prediction of the self-corrosion rate of a single metal when it is not galvanically coupled to another metal. This can be done by simply setting the "cathode to anode area ratio" to zero – the anode metal in the selected couple is then effectively corroding independently without the influence of galvanic effect from the cathode. Now you can change the temperature, velocity, or the environment and see the predicted remaining life of the anode metal without the influence of galvanic corrosion. This is another unique feature in GC-Compass that is not found in any other galvanic corrosion prediction software based on the static "curve crossing" methodology. WebCorr's corrosion prediction software and corrosion modeling software utilize machine learning and cloud computing to optimize the predictive engines such that all contributing factors to the galvanic corrosion process are accurately processed.

Service Life Prediction for Fasteners

GC-Compass can be a particularly powerful tool for predicting the performance or service life of fasteners. For example, the SS316 fasteners used on AA6061 plates exposed to seawater at 60°C can be accurately predicted using the "effective thickness of anode". Assuming that the fastening assembly will fail when the hole in the AA6061 plates loses 0.35 mm thickness (or the diameter of the hole increases by 0.70 mm), GC-Compass predicts that the SS316-AA6061 assembly exposed to seawater at 60°C would fail in about 6 months (Figure 6a) below.

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 6a GC-Compass Predicts the Galvanic Compatibility and the Service Life of Fasteners

Numerous fastener configurations (metallic materials both ferrous and non-ferrous, with metallic coatings such as cadmium, nickel, zinc and galvanizing, and CFRP composites) exposed to seawater, fresh water, tap water, distilled water, marine atmosphere and industrial atmosphere can be assessed and evaluated at the design stage before service failures occur in the fields. For example, Figure 6b shows that aluminum alloy AA7075 is compatible with titanium alloy Ti-6AI-4V exposed to marine environment at 25°C. No significant galvanic effect is expected under the specified conditions. However, when the temperature is increased by 10°C to 35°C which is entirely expected in aircrafts operating in many parts of the world, the compatibility class shifted to Class II: borderline condition with significant galvanic corrosion rate at 0.229 mm/y, as shown in Figure 6c. **Other galvanic corrosion prediction software based on the static "curve crossing" methodology simply fails to model this critical effect of temperature on the galvanic compatibility.**

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 6b GC Compass Predicts the Compatibility of AA7075 with Ti-6Al-4V Fasteners

	GC-Compass®: Galvanic Corrosion P	rediction and Galvanic Compatibilit	y Assessment
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvan	ic Couples)
Service Environment:	Marine Atmosphere 🗸	Water Velocity (m/s):	
Select Material A	and Material B in the Galvanic Couple	e Temperature (°C):	35.00
	Aluminum and Its Alloys	Meterial Dr.	Titanium and Its Alloys
Material A:	AA7075 🗸	Material B:	Ti6Al4V 🗸
	AA7075 is the Anode.		Ti6Al4V is the Cathode.
E	ffective Cathode to Anode Area Ratio:	1.570	
	Effective Thickness of Anode (mm):	0.350	
	Predicted Galvanic Current (µA/cm2):	20.664	Electrolyte
	Predicted Galvanic Factor:	3.238	Metal 1 Metal 2
Pre	dicted Anode Corrosion Rate (mm/y):	0.229	e"
Pre	dicted Remaining Service Life (years):	1.526	Anodo Cathada
	Galvanic Compatibility Class:	Class II: Borderline	Allode Californi
Galv	vanic Series in Selected Environments:	CO2-Saturated Brine	~
Metal A	304 stainless steel 🗸	Open Circuit Potential, mV (SCE)	201
Metal B	304 stainless steel 🗸	Open Circuit Potential, mV (SCE)	201
Po	tential difference between 304 stainle	ss steel and 304 stainless steel, mV	0
			No Galvanic Risk

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 6c GC-Compass Models the Critical Effect of Temperature on the Galvanic Compatibility of Fasteners

Service Life Prediction for Process Piping in Semiconductor Manufacturing

In semiconductor manufacturing, the process cooling water is frequently contaminated with copper ions, which will deposit on aluminum alloy AA6061 piping surface and induce pitting corrosion in aluminum AA6061. The temperature of the process cooling water is about 90°C and the pipe wall thickness is 2.85 mm. The first leak in the piping was reported after 850 days in operation. Tap water in GC-Compass closely matches the chloride level in the process cooling water. With this basic information (Figure 7), GC-Compass predicts that the piping would leak in approximately 2.349 years after operation due to the galvanic effect of AA6061 and the copper deposit. Other galvanic corrosion prediction software based on the static "curve crossing" methodology simply fail to model the critical effects of temperature and service environment on the galvanic compatibility and the remaining life.

GC-Compass [®] : Galvanic Corrosion Prediction and Galvanic Compatibility Assessment				
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvan	ic Couples)	
Service Environment:	Tap Water 🗸 🗸	Water Velocity (m/s):	0.000	
Select Material A	and Material B in the Galvanic Couple	e Temperature (°C):	90.00	
Matorial A:	Aluminum and Its Alloys	Motorial Pt	Copper and Copper Alloys	~
Wateria A.	AA6061 ~	Material D.	Copper	~
	AA6061 is the Anode.		Copper is the Cathode.	
E	ffective Cathode to Anode Area Ratio:	1.350		
	Effective Thickness of Anode (mm):	2.850		
1	Predicted Galvanic Current (µA/cm2):	111.309	Electrolyte	
	Predicted Galvanic Factor:	21.455	Motel 1 Motel 2	
Pre	dicted Anode Corrosion Rate (mm/y):	1.213		
Pre	edicted Remaining Service Life (years):	2.349	Anode Cathode	
	Galvanic Compatibility Class:	Class III: Not Compatible		
Galv	vanic Series in Selected Environments:	CO2-Saturated Brine		~
Metal A	304 stainless steel 🗸	Open Circuit Potential, mV (SCE)	201	
Metal B	304 stainless steel 🗸	Open Circuit Potential, mV (SCE)	201	
Po	otential difference between 304 stainle	ss steel and 304 stainless steel, mV	0	
			No Galvanic Risk	
			1000 0000	

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 7 GC-Compass Predicts Service Life of Process Piping in Semiconductor Manufacturing.

Service Life Prediction for Structures in Marine and Seawater Services

AA6061 plate and carbon steel structural members were used for the construction of a vessel for seawater services. The effective cathode to anode area ratio is 14.00. The vessel leaked just over 2 years after commencing operation. The galvanic compatibility between AA6061 and carbon steel predicted by GC-Compass is Class III, which means the two materials are not compatible in the seawater environment, and the time-to-leak predicted by GC-Compass is 2.092 years (Figure 8). Other galvanic corrosion prediction software based on the static "curve crossing" methodology simply fail to model this critical effect of cathode to anode area ratio on the galvanic corrosion rate and galvanic compatibility in seawater.

	GC-Compass®: Galvanic Corrosion P	rediction and Galvanic Compatibility	/ Assessment	
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvani	c Couples)	
Service Environment:	Sea Water 🗸	Water Velocity (m/s):	0.000	
Select Material	A and Material B in the Galvanic Couple	Temperature (°C):	25.00	
Material A:	Aluminum and Its Alloys	Material B:	Carbon Steels and Low Alloy Steels	• ~
Material A:	AA6061 ~	Material D.	HY80 Steel	~
	AA6061 is the Anode.		HY80 Steel is the Cathode.	
I	Effective Cathode to Anode Area Ratio:	14.000		
	Effective Thickness of Anode (mm):	5.000		
	Predicted Galvanic Current (µA/cm2):	219.275	Electrolyte	
	Predicted Galvanic Factor:	82.468	Motol 1 Motol 2	
Pre	edicted Anode Corrosion Rate (mm/y):	2.390	e e	
Pr	edicted Remaining Service Life (years):	2.092	hade failede	
	Galvanic Compatibility Class:	Class III: Not Compatible	Anode Cathode	
Gal	vanic Series in Selected Environments:	CO2-Saturated Brine		~
Metal A	304 stainless steel 🗸	Open Circuit Potential, mV (SCE)	201	
Metal B	304 stainless steel 🗸	Open Circuit Potential, mV (SCE)	201	
ł	Potential difference between 304 stainle	ess steel and 304 stainless steel, mV	0	

No Galvanic Risk

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 8 GC-Compass Predicts the Service Life of Structures in Marine and Seawater Services

Service Life Prediction for Carbon Steel Storage Tank with Stainless Steel 304 Clad Bottom

In a major expansion program, a plant installed several hundred large storage tanks. Most of the older tanks were made of ordinary carbon steel and completely coated on the inside with a baked phenolic paint. The solutions in the tanks were only mildly corrosive to steel but contamination of the product was a major consideration. The coating on the floor was damaged because of mechanical abuse and some maintenance was required. The tops and sides were made of steel, with the sides welded to the stainless steel (304) clad bottoms. The steel was coated with the same phenolic paint, with the coating covering only a small portion of the stainless steel below the weld. A few months after start-up of the new plant, the tanks started failing because of perforation of the side walls. It was observed that most of the holes were located within a 2-inch band above the weld.

This is a classic galvanic corrosion case involving the question of which metal to coat – carbon steel or stainless steel. In GC-Compass (Figure 9), we use tap water to represent the mildly corrosive solutions in the tank. The uncoated stainless steel tank bottom and the coating breaks/defects/holidays on the coated carbon steel ensues a cathode to anode area ratio of at least 500. GC-Compass predicts that galvanic corrosion would perforate the wall thickness in 0.197 years (2.4 months)! **Other galvanic corrosion prediction software based on the static "curve crossing" methodology simply fail to model this critical effect of cathode to anode area ratio on the galvanic corrosion rate and galvanic compatibility.**

	GC-Compass®: Galvanic Corrosion P	rediction and Galvanic Compatibility	Assessment
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvanio	: Couples)
Service Environment:	Tap Water 🗸	Water Velocity (m/s):	0.000
Select Material	A and Material B in the Galvanic Couple	e Temperature (°C):	25.00
Material A:	Carbon Steels and Low Alloy Steel: \checkmark	Material P:	Stainless Steels and Alloys
Wateria A.	Carbon Steel 🗸	Wateria D.	SS316 ~
	Carbon Steel is the Anode.		SS316 is the Cathode.
	Effective Cathode to Anode Area Ratio:	500.000	
	Effective Thickness of Anode (mm):	10.000	
	Predicted Galvanic Current (μ A/cm2):	4350.860	Electrolyte
	Predicted Galvanic Factor:	435.720	
Pro	edicted Anode Corrosion Rate (mm/y):	50.835	metal 1 metal 2
Pr	edicted Remaining Service Life (years):	0.197	
	Galvanic Compatibility Class:	Class III: Not Compatible	Anode Cathode
Gal	vanic Series in Selected Environments:	CO2-Saturated Brine	~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	-253
Metal B	5Cr steel 🗸	Open Circuit Potential, mV (SCE)	-641
	Potential difference	e between Copper and 5Cr steel, mV	388
C	opper is cathodic to 5Cr steel in CO2-Sa	turated Brine.	Very High Galvanic Risk

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 9 GC-Compass Predicts Galvanic Corrosion and the Effect of Cathode-to-Anode Area Ratio in Carbon Steel Storage Tank with SS304 Clad Bottom

Service Life Prediction of a Aluminum Casing of a Water Heater

A hospital needed an emergency power supply in case of mains failure, so a diesel engine was provided. To ensure that the diesel would cut in immediately if the power failed, it was kept warm by means of a water heater with an aluminum casing. After a few months in operation, the 8 mm thick aluminum casing was penetrated causing the water to leak out. Inspection showed that a copper heating element had been used. Copper ions deposited at the 12 o'clock position by convection and caused extremely rapid pitting. In GC-Compass (Figure 10), the Al-Cu galvanic couple is selected and it predicted that the 8 mm thick Al casing would be perforated in just under 4 months. **Other galvanic corrosion prediction software based on the static "curve crossing" methodology simply fail to model this critical effects of service temperature and cathode to anode area ratio on the galvanic corrosion rate and galvanic compatibility in tap water.**

GC-Compass®: Galvanic Corrosion Prediction and Galvanic Compatibility Assessment				
	for Metals, Alloys, and CFRP Com	posites Ver. 12.4.12 (6,555 Galvani	c Couples)	
Service Environment:	Tap Water 🗸	Water Velocity (m/s):	0.000	
Select Material	A and Material B in the Galvanic Couple	e Temperature (°C):	60.00	
Matorial A:	Aluminum and Its Alloys	Material P	Copper and Copper Alloys	~
Material A.	Aluminum 🗸	Wateria D.	Copper	~
	Aluminum is the Anode.		Copper is the Cathode.	
E	ffective Cathode to Anode Area Ratio:	100.000		
	Effective Thickness of Anode (mm):	8.000		
	Predicted Galvanic Current (µA/cm2):	2484.684	Electrolyte	
	Predicted Galvanic Factor:	10,647.166		
Pre	edicted Anode Corrosion Rate (mm/y):	27.138	Metal 1 Metal 2	
Pro	edicted Remaining Service Life (years):	0.295		
	Galvanic Compatibility Class:	Class III: Not Compatible	Anode Cathode	
Gal	vanic Series in Selected Environments:	Aerated Tap Water		~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	64	
Metal B	Mild steel 🗸	Open Circuit Potential, mV (SCE)	-646	
	Potential difference	between Copper and Mild steel, mV	710	
C	opper is cathodic to Mild steel in Aerate	ed Tap Water.	Very High Galvanic Risk	
			And Address of the Ad	

Figure 10 GC-Compass Predicts Pitting Corrosion Due to Galvanic Effect in Aluminium Casing

GC-Compass also predicts galvanic series and the open circuit potentials (free corrosion potentials) for many metals and alloys in selected environments including waters, soils, acids, caustics, oil and gas production

wells: Seawater Aerated Tap Water Deaerated Tap Water Neutral Soils 0.1N HCl 0.1N HNO3 0.1N NaOH CO2-Saturated Brine H2S-Saturated Brine Sweet Well Produced Brine Sour Well Produced Brine Heavy Brine Packer Fluid Acidizing Fluid As shown in Figure 10 above, the open circuit potential, or the free corrosion potential for mild steel in aerated tap water is predicted by GC-Compass to be -646 mV (SCE) while the potential for copper is 64 mV (SCE). GC-Compass calculates the potential difference between Metal A (mild steel) and Metal B (copper) and concludes that mild steel is anodic to copper in aerated tap water with a very high galvanic corrosion risk.

	GC-Compass®: Galvanic Corrosion P for Metals, Alloys, and CFRP Com	rediction and Galvanic Compatibility posites Ver. 12.4.12 (6,555 Galvani	/ Assessment c Couples)
Service Environment:	Tap Water 🗸	Water Velocity (m/s):	0.000
Select Material	A and Material B in the Galvanic Couple	Temperature (°C):	60.00
	Aluminum and Its Alloys		Copper and Copper Alloys
Material A:	Aluminum 🗸	Material B:	Copper 🗸
	Aluminum is the Anode.		Copper is the Cathode.
E	ffective Cathode to Anode Area Ratio:	100.000	
	Effective Thickness of Anode (mm):	8.000	
	Predicted Galvanic Current (µA/cm2):	2484.684	Electrolyte
	Predicted Galvanic Factor:	10,647.166	Netal 1 Netal 2
Pre	edicted Anode Corrosion Rate (mm/y):	27.138	e Metal 2
Pro	edicted Remaining Service Life (years):	0.295	tente Caterte
	Galvanic Compatibility Class:	Class III: Not Compatible	Anode Cathode
Gal	vanic Series in Selected Environments:	Aerated Tap Water	~
Metal A	Copper 🗸	Seawater	
Metal B	Mild steel 🗸	Aerated Tap Water	
	Potential difference l	Deaerated Tap Water	
С	opper is cathodic to Mild steel in Aerate	Neutral Soils	
		0.1N HCl	
		0.1N HNO3	
	THE PLACE	0.1N NaOH	
1		CO2-Saturated Brine	
		H2S-Saturated Brine	
		Sweet Well Produced Brine	
4	Contraction of the	Sour Well Produced Brine	
-		Heavy Brine Packer Fluid	
and the second	a section of the	Acidizing Fluid	
	and the second s	CDU Overhead	

Copyright © 1995-2024 WebCorr Corrosion Consulting Services

Figure 11 GC-Compass Predicts Galvanic Series for Metals and Alloys in Selected Environments

	GC-Compass®: Galvanic Corrosion P for Metals, Alloys, and CFRP Com	rediction and Galvanic Compatibility posites Ver. 12.4.12 (6,555 Galvani	y Assessment ic Couples)
Service Environment:	Tap Water 🗸	Water Velocity (m/s):	0.000
Select Material	A and Material B in the Galvanic Couple	Temperature (°C):	60.00
	Aluminum and Its Alloys		Copper and Copper Alloys
Material A:	Aluminum 🗸	Material B:	Copper 🗸
	Aluminum is the Anode.		Copper is the Cathode.
1	Effective Cathode to Anode Area Ratio:	100.000	
	Effective Thickness of Anode (mm):	8.000	
	Predicted Galvanic Current (µA/cm2):	2484.684	Electrolyte
	Predicted Galvanic Factor:	10,647.166	
Pro	edicted Anode Corrosion Rate (mm/y):	27.138	Metal 1 Metal 2 e ⁻
Pr	edicted Remaining Service Life (years):	0.295	
	Galvanic Compatibility Class:	Class III: Not Compatible	Anode Cathode
Gal	vanic Series in Selected Environments:	Aerated Tap Water	~
Metal A	Copper 🗸	Open Circuit Potential, mV (SCE)	64
Metal B	9Cr	pen Circuit Potential, mV (SCE)	-646
	Admiralty brass	tween Copper and Mild steel, mV	710
0	Alloy 20Cb3	Tap Water.	Very High Galvanic Risk
	Aluminum alloys		107 100
	Aluminum brass		
	Aluminum bronze		10 BB
5	Antimony		
	Baked electroless nickel plating		
and the second s	Cadmium plating		State State
	Cartridge brass		
-	Colmonoy flame sprayed coating		- Concession
and an	Copper		Lis Strate
	Duplex nickel plating		the second second
	Duplex stainless steel 2205	/ebCorr Corrosion Consulting Services	States and the second
	Duplex stainless steel 2304		
	Duplex stainless steel 2507		
	Electroless nickel plating		
	Graphite		
	Graphite Hard Chrome plating		

Figure 12 GC-Compass Predicts Galvanic Series for Metals and Alloys in Selected Environments

The powerful applications of GC-Compass are truly unlimited in engineering design, galvanic corrosion prediction and modeling, materials compatibility assessment, trouble-shooting process-related issues and failure analysis of components and systems. Figure 14 shows the feature comparison between GC-Compass and other software based on curve-crossing methodology.

Feature Comparison

	GC-Compass	Other Software Based on
		Curve Crossing Methodology
Performance guarantee with refund of license fee if the predicted corrosion rate is not closer to the measured value than that predicted by any other commercial corrosion model.		
Models the critical effect of Temperature on galvanic corrosion rate		
Models the critical effect of Velocity on galvanic corrosion rate		×
galvanic compatibility class		
Models the critical effect of Environments		
artificial seawater		
natural seawater		
freshwater		
tap water		
distilled water		
marine atmosphere		
industrial atmosphere		
Model the critical effect of cathode-to-anode area ratio		
Predict the galvanic compatibility class		
Predict the remaining life		
With over 6,500 (six thousand five hundred) galvanic couples included in the Software		

Figure 14 GC-Compass Offers More Features Than Other Software Based on Curve-Crossing Methodology.

Click here to contact us for licensing details and experience the power of GC-Compass.

GC-Compass, giving you the right directions in Galvanic Corrosion Prediction and Assessment

Home | Contact Us | PDF

Copyright © 1995-2024. All rights reserved.