

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Coatings | Materials Selection | Cathodic Protection | >>>

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support | CorrCompass

Overview of PCW-Compass: Predictive Modeling Software for Corrosion Prediction of Pipes/Tubes in Cooling Water Systems

Cooling water systems are used in many industrial services, processes, and operations. Pipes and tubes are susceptible to severe corrosion if the cooling water chemistry is not properly controlled. Some of the critical factors influencing the corrosivity of the cooling water include: water pH, dissolved oxygen in water, water temperature, water velocity, water conductivity, concentrations of chloride and other ionic species. PCW-Compass is the only device and OS independent predictive software on the market for the modeling and life prediction of corrosion in process cooling water systems. Designers, engineers, architects, consultants, maintenance and inspection personnel can quickly assess and quantify the impact of the cooling water chemistry on the corrosion rate, corrosion depth,

the remaining life, and the mode of failure for a range of materials including cast irons, ductile irons, mild steels, stainless steels, copper alloys, aluminum alloys, and nickel alloys.

Under the water chemistry shown in Figure 1 below, PCW-Compass predicts that the corrosion rate of ductile iron is 2.022 mm/y, the

corrosion depth is 4.043 mm, the predicted lifespan is 6.183 yers, the remaining life (time-to-perforation) is 4.183 years, and the mode of

failure is leak due to perforation or cracking. This ductile iron pipe cannot meet the design life of 30 years under the prevailing water

chemistry. PCW-Compass models the effect of corrosion inhibitors on the corrosion in cooling water system. In Figure 2 below, PCW-

Compass predicts that a corrosion inhibitor with 90% inhibiting efficiency and 90% availability will reduce the corrosion rate of the ductile

iron pipe and increase the design life to over 30 years.

Pipe/Tube ID Ductile Iron	Pipe			Unit of Measure	SI Metric
Design	Data		Corro	sion Prediction	
Pipe/Tube Materi	al Ductile Iron	~	Corrosion Depth	mm	4.043
Design Li	fe years	30	Corrosion Rate	mm/y	2.022
Age of Pipe/Tub	e years	2.000	Predicted Lifespan	years	6.183
Nominal Wall Thickne	ss mm	12.500	Remaining Life	years	4.183
Water Ch	emistry		Failure Mode: Leak	due to perforation	/cracking
Water p	Н рН	7.00			
Water Temperatu	re °C	90.00	3.000		
Water Veloci	ty m/s	3.000			/
Dissolved O ₂ (ppr	n) measured 🗸	6.500			
Conductivi	ty <mark>µS/c</mark> m	3,500	2.000		
Calcium [Ca ²	⁺] mg/L	73			
Chloride [Cl	⁻] mg/L	1,418	1.000		
Copper [Cu ²	⁺] mg/L	0.002			
Sulphate [SO ₄ ²	⁻] mg/L	2,592			
Total Alkalinity as CaCC)3 mg/L	90	0.000	3.0 4.0 5.	0 6.0
Total Hardness as CaCC)3 mg/L	380	Corrosion Rate (mm/y) vs. Velocity (n	n/s)
Total Dissolved Solids (TD	S) mg/L	2,275	Langelier Satu	ration Index (LSI) 0.	.02
Inhibitor Efficien	cy %	0.000	Ryznar Sta	ability Index (RSI) 6.	97
Inhibitor Availabili	ty %	0.000	Puckorius S	caling Index (PSI) 6.	98
Dissolved Inorganic Carbon (DI	C) mg/L as C	25.62	Agg	ressive Index (AI) 11	1.53
Vater Corrosivity: Little corrosion	ı		Larson-	Skold Index (LSK) 52	2.20
Scaling Tendency: Neutral/Balan	ced; Little scale will	form.	CaCO3 Precipitation	Potential (CCPP) 0.	71

Figure 1 Overview of PCW-Compass.

Version 12.4.3

Pipe/Tube ID	ouctile Iron Pip	874 			Unit of Measure	SI Metric	
	Design Dat	ta		Corre	osion Prediction		
Pipe/Tube Material		Ductile Iron	~	Corrosion Depth	mm	0.768	
Design Life		years	30	Corrosion Rate	mm/y	0.384	
Age of Pipe/Tube		years	2.000	Predicted Lifespan	years	32.543	
Nominal Wall Thickness		mm	12.500	Remaining Life	years	30.543	
	Water Chem	stry		Failure Mode: Leal	k due to perforation/o	cracking	
	Water pH	рH	7.00				
Water	Temperature	°C	90.00	3.000			
W	ater Velocity	m/s	3.000	2.500			
Dissol	ved O ₂ (ppm)	measured 🗸	6.500				
	Conductivity	μS/cm	3,500	2.000-			
Ca	lcium [Ca ²⁺]	mg/L	73	1.500			
C	hloride [Cl ⁻]	mg/L	1,418	1.000			
Co	opper <mark>[</mark> Cu ²⁺]	mg/L	0.002	0.500		100	
Sulp	hate [SO ₄ ²⁻]	mg/L	2,592				
Total Alkalir	nity as CaCO3	mg/L	90	0.000 1.0 2.0	3.0 4.0 5.0	6.0	
Total Hardn	ess as CaCO3	mg/L	380	Corrosion Rate	(mm/y) vs. Velocity (m	/s)	
Total Dissolved	Solids (TDS)	mg/L	2,275	Langelier Satu	ration Index (LSI) 0.0	2	
Inhibi	tor Efficiency	%	90.000	Ryznar Sta	ability Index (RSI) 6.9	17	
Inhibito	or Availability	%	90.000	Puckorius S	caling Index (PSI) 6.9	8	
Dissolved Inorganic	Carbon (DIC)	mg/L as C	25.62	Agg	ressive Index (AI) 11	.53	
ater Corrosivity: Litt	le corrosion			Larson-	Skold Index (LSK) 52	.20	
caling Tendency: Ne	utral/Balanced	: Little scale will	form.	CaCO3 Precipitation	Potential (CCPP) 0.7	'1	

Figure 2 PCW-Compass models the effect of corrosion inhibitor on the remaining life of ductile iron pipe

Using PCW-Compass is as easy as 1-2-3:

- (1) Select the pipe/tube material from the dropdown list;
- (2) Enter the water chemistry;

(3) Review the prediction results.

Version 12.4.3

Pipe/Tube ID	Ductile Iron Pip	e					Unit o	f Measure	SI	Metric	
	Design Da	ta				Corro	sion Pre	diction			
Pipe/Tube Material Ductile Iron 🗸		Corrosion Dept		epth	n mm		(0.768			
	Design Life	AA1XXX AA2XXX		C	Corrosion	Rate	mn	n/y	0.384		
A	ge of Pipe/Tube	AA3XXX AA5XXX		Pred	licted Life	span	ye	ars	3	32.543	
Nominal	l Wall Thickness	AA6XXX AA7XXX		F	Remaining	g Life	ye	ars	30.543		
Water Chem Ductile Iron			Failure Mode: Leak due to perforation/cracking								
	Water pH	Carbon Steel Low Alloy Stee									
Wat	er Temperature	0.5Cr0.5Mo (SA387 Gr.2) 1.0Cr0.5Mo (SA387 Gr.12) 1.25Cr0.5Mo (SA387 Gr.11) 2.25Cr1.0Mo (SA387 Gr.22) 3.0Cr1.0Mo (SA387 Gr.21) Copper Cu90Ni10 Cu70Ni30 Admiralty Brass		3.000							
	Water Velocity			2.500-							
Diss	solved O ₂ (ppm)			2.000							
	Conductivity										
	Calcium [Ca ²⁺]			1.500-							
	Chloride [Cl ⁻]	Ni-Al-Bronze		1.000							
	Copper [Cu ²⁺]	mg/L	0.002	0.500				_	-	-	
Si	ulphate [SO ₄ ²⁻]	mg/L	2,592	0.000	-						_
Total Alka	alinity as CaCO3	mg/L	90	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7
Total Har	dness as CaCO3	mg/L	380		Corrosio	n Rate (r	mm/y) v	s. Velocity	(m/s)		_
Total Dissolv	ved Solids (TDS)	mg/L	2,275		Langelie	er Satur	ation In	dex (LSI)	0.02		
Inh	ibitor Efficiency	%	90.000		Ryz	nar Sta	bility In	dex (RSI)	6.97		
Inhib	oitor Availability	%	90.000		Puck	orius Sc	aling In	dex (PSI)	6.98		
Dissolved Inorgar	nic Carbon (DIC)	mg/L as C	25.62			Aggr	essive I	ndex (AI)	11.53		
Water Corrosivity: I	Little corrosion				L	arson–S	kold Ind	dex (LSK)	52.20		
Scaling Tendency:	Neutral/Balanced	; Little scale will	l form.	CaC	O3 Precip	itation	Potenti	al (CCPP)	0.71		

Figure 3 PCW-Compass A Software Tool for Materials Selection in Process Cooling Water Systems

The materials database in the PCW-Compass software is updated regularly with more alloys added to the list below:

AA1XXX

AA2XXX

AA3XXX

AA5XXX

AA6XXX

AA7XXX

Cast Iron

Ductile Iron

Carbon Steel

Low Alloy Steel

0.5Cr0.5Mo (SA387 Gr.2)

1.0Cr0.5Mo (SA387 Gr.12) 1.25Cr0.5Mo (SA387 Gr.11) 2.25Cr1.0Mo (SA387 Gr.22) 3.0Cr1.0Mo (SA387 Gr.21) Copper Cu90Ni10 Cu70Ni30 Admiralty Brass Ni-Al-Bronze Nitronic 60 Туре 304 Туре 316 Duplex 2304 Duplex 2205 Duplex 2507 Alloy C-276

If you cannot find the alloy of your interest in the list, do let us know through the Contact Us link and we will conduct the necessary work to add the alloy in the database, free of charge for licensed users of PCW-Compass.

Version 12.4.3

Pipe/Tube ID	Ductile Iron Pip)e			Unit of Measure	SI Metric	
	Design Da	ta		Corros	sion Prediction		
Pipe/Tube Material Ductile Iron		~	Corrosion Depth	mm	0.768		
Design Life		years	30	Corrosion Rate	mm/y	0.384 32.543 30.543	
Age of Pipe/Tube		years	2.000	Predicted Lifespan	years		
Nominal Wall Thickness mm		mm	12.500	Remaining Life	years		
	Water Chem	istry		Failure Mode: Leak	due to perforation/	cracking	
	Water pH	рН	7.00				
Wat	er Temperature	°C	90.00	3.000			
	Water Velocity	m/s	3.000	2.500-			
Diss	olved O ₂ (ppm)	measured 🗸	6.500				
	Conductivity	measured saturated	3,500	2.000-			
	Calcium [Ca ²⁺]	deaerated	73	1.500-			
	Chloride [Cl ⁻]	mg/L	1,418	1.000			
	Copper [Cu ²⁺]	mg/L	0.002	0.500			
S	ulphate [SO ₄ ²⁻]	mg/L	2,592				
Total Alka	alinity as CaCO3	mg/L	90	0.000	3.0 4.0 5.0	6.0	
Total Har	dness as CaCO3	mg/L	380	Corrosion Rate (r	mm/y) vs. Velocity (m	/s)	
Total Dissol	ved Solids (TDS)	mg/L	2,275	Langelier Satur	ation Index (LSI) 0.0	02	
Inh	ibitor Efficiency	%	90.000	Ryznar Sta	bility Index (RSI) 6.9	97	
Inhit	oitor Availability	%	90.000	Puckorius Sc	aling Index (PSI) 6.9	98	
Dissolved Inorgar	nic Carbon (DIC)	mg/L as C	25.62	Aggr	essive Index (AI) 11	.53	
/ater Corrosivity: I	Little corrosion			Larson-S	kold Index (LSK) 52	.20	
caling Tendency:	Neutral/Balanced	l; Little scale will	form.	CaCO3 Precipitation	Potential (CCPP) 0.7	71	

Figure 4 PCW-Compass models and predicts saturated oxygen concentration in water if it is not measured.

PCW-Compass also predicts the corrosivity and the scaling tendency of the specified water chemistry. The commonly used Langelier Saturation Index (LSI), Ryznar Stability Index (RSI), Puckorius Scaling Index (PSI), Larson–Skold Index (LSK), Aggressive Index (AI), Larson– Skold Index (LSK), and Calcium Carbonate Precipitation Potential (CCPP) are all computed for the prevailing operating conditions. The

corrosivity of water and the scaling tendency are predicted and classified in accordance with ISO/TR4340 and best industry practice.

The powerful applications of PCW-Compass are truly unlimited in engineering design, materials selection, process operation, inspection and

maintenance, modeling and prediction of corrosion in process cooling water systems.

WebCorr can also customize PCW-Compass for your specific process fluids and alloys used in your company's operations.

Click here to contact us for licensing details.

PCW-Compass, giving you the right directions in managing corrosion in cooling water systems.

Home | Contact Us | PDF

Copyright ©1995-2024. WebCorr Corrosion Consulting Services. All rights reserved.

##