

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Coatings

Corrosion Modeling and Corrosion Prediction Software

H2Compass[®]: Modeling and Prediction of Low Temperature Hydrogen Damages and High Temperature Hydrogen Attack

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training

Overview and Application Examples of H2Compass

Hydrogen atoms regardless of their sources can diffuse into steels and alloys causing hydrogen damages at ambient or low temperature via a number of different mechanisms: hydrogen blistering (HB), hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), stepwise cracking (SWC), hydrogen embrittlement (HE), hydrogen stress cracking (HSC), sulfide stress cracking (SSC), and soft zone cracking (SZC). At high temperatures, the hydrogen atoms can react with carbon in the steels and alloys causing surface decarburization and/or internal decarburization, fissuring and cracking, a phenomenon known as high temperature hydrogen attack (HTHA).

H2Compass is the only device and OS independent software tool on the market for the modeling and prediction of low temperature hydrogen damages (HB, HIC, SOHIC, SWC, HE, HSC, SZC, SSC) and high temperature hydrogen attack (HTHA). H2Compass is a cloud-based software that works on any device running any OS without the need for users to install or download anything. Designers, OEM engineers, consultants, operation personnel, maintenance and inspection engineers can quickly and accurately determine:

(1) the safe operating temperature limits and hydrogen partial pressure limits for the common metallurgies used for both low and high temperature hydrogen services;

- (2) the concentration of hydrogen atoms in steels and alloys;
- (3) the internal hydrogen gas pressure built-up in steels and alloys;
- (4) the risk of low temperature hydrogen damages;
- (5) the requirements for post-weld heat treatment (PWHT) and pre-heating;
- (6) the remaining time to incipient high temperature hydrogen attack (or the incubation period);
- (7) the risk ranking of high temperature hydrogen attack (HTHA) as per API RP 581;
- (8) the expected form of HTHA as per API RP 941 under the prevailing operating condition;
- (9) the recommended HTHA inspection interval under the prevailing operating condition;
- (10) the recommended effective methods for HTHA inspection, assessment, and monitoring;

How to determine the operating temperature limits for steels in hydrogen service to avoid high

temperature hydrogen attack (HTHA)?

H2Compass®: Modeling and Prediction of Low Temperature Hydrogen Damages and High Temperature Hydrogen Attack

Equipment Location/ID	bypass line#1	in catalytic ref	ormer				
Operating Temperature (OT)	°C	425.00]	Material of Construction	1Cr0.5Mo		~
H2 Partial Pressure (OP)	MPa	2.900		Predicted H Concentration in S	iteel	ppm	1.206
Component Operating Hours	hours	100,000]	Internal H2 Pressure at H Trap	s in Steel	MPa	5.283e+2
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC	/SWC HE/HSC	/SSC/SZC)	High Tem	perature Hydroge	n Attack (HTHA)
PWHT and Pre-Heating Requirements	с	Мо	Cr	Temperature Limit at Operatir	g Pressure	°C	518.96
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operating	g Temperature	MPa	8.881
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	ttack	years	n/a
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	No	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	n/a		
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	ent Interval	years	not required
Reduce the hardness and/or the atomic H	concentration ir	n steel.		HTHA Inspection	, Assessment, and	d Monitoring N	1ethods
	Raj-	Ter		n/a			
271	a R		5 Contract	нт	HA Control and Pr	revention	
L - J a		ST.	-	The selected material is NOT s and H2 partial pressure.	susceptible to HTH	A under the of	perating temperature

H2Compass[®] Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 1 H2Compass predicts low temperatures hydrogen damages and high temperature hydrogen attack (HTHA).

Under the prevailing operating conditions shown in Figure 1 above, the atomic hydrogen concentration in the selected alloy, 1Cr0.5Mo, is predicted to be 1.206 ppm. The safe temperature limit for this alloy steel at the prevailing operating pressure (OP) of 2.90MPa is 518.96°C, the safe hydrogen pressure limit at the prevailing operating temperature (OT) of 425°C is 8.881 MPa. H2Compass determines that there is no risk of HTHA as this alloy is not

susceptible to HTHA at the prevailing operating conditions. At low temperatures, however, this

alloy is susceptible to hydrogen blistering (HB), hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), stepwise cracking (SWC), hydrogen embrittlement (HE), hydrogen stress cracking (HSC), sulfide stress cracking (SSC), and soft zone cracking (SZC). Post-weld heat treatment is required to minimize the risk of low temperature hydrogen damages. H2Compass also calculates the internal hydrogen gas pressure at hydrogen traps in steels. Under the prevailing conditions shown in Figure 1 above, the buildup of internal hydrogen gas pressure upon cooling from 425°C (or for a steel containing 1.206 ppm hydrogen) can reach 528 MPa. This internal pressure can cause hydrogen blistering (HB), as shown in Figure 2.

How to select alloy steels for high temperature hydrogen services?

How to determine the integrity operating windows for high temperature high pressure hydrogen services?

How to assess the susceptibility of an alloy steel to high temperature hydrogen attack (HTHA)? How to assess the cumulative effect of exposure time on the equipment's susceptibility to high temperature hydrogen attack (HTHA)?

Under the prevailing temperature and hydrogen partial pressure shown in Figure 1 above, 1Cr0.5Mo is not susceptible to high temperature hydrogen attack (HTHA). However, if the hydrogen partial pressure increases to 10 MPa, this metallurgy becomes susceptible to high temperature hydrogen attack, as shown in Figure 3. H2Compass recommends to reduce operating temperature, or pressure, or change the metallurgy. H2Compass accounts for the cumulative effect of exposure time when determining the remaining time to incipient attack (or the remaining incubation period) and the HTHA risk ranking of a component in high temperature hydrogen services. H2Compass also predicts the expected form of HTHA and the requirement for HTHA inspection and assessment under the prevailing operating conditions.

4

Equipment Location/ID	bypass line#1	bypass line#1 in catalytic reformer					
Operating Temperature (OT)	°C	425.00	Material of Construction 1Cr0.5Mo			~	
H2 Partial Pressure (OP)	MPa	10.000]	Predicted H Concentration in S	Steel	ppm	2.239
Component Operating Hours	hours	100,000]	Internal H2 Pressure at H Trap	s in Steel	MPa	1.822e+3
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC	/SWC HE/HSC	/ssc/szc)	High Tem	perature Hydrogen	Attack (HTH	A)
PWHT and Pre-Heating Requirements	с	Мо	Cr	Temperature Limit at Operatir	ng Pressure	°C	378.44
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operatin	g Temperature	MPa	8.881
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	ttack	years	0.000
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	High	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	Internal decarburiz	ation, fissuri	ng, and cracking
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	ient Interval	years	Overdue
Reduce the hardness and/or the atomic H	concentration ir	ı steel.		HTHA Inspection, Assessment, and Monitoring Methods			
	VT for bulging/blistering; WFMT/PT/MT for surface cracks; FMR/RT for microvoid/fissures/cracks			IR/RT for			
27 i	G R		HTHA Control and Prevention				
in the second as	- All	ST	Options to prevent HTHA: (1) Reduce the operating temperature to IOW limit; (2) Reduce the H2 partial pressure to IOW limit; (3) Upgrade the metallurgy				
		H2Compass	© Ver 9.20 ©	1995 - 2020 WebCorr Corrosio	n Consulting Service	25	

Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consul

Figure 3 H2Compass Predicts susceptibility of 1Cr0.5Mo to high temperature hydrogen attack (HTHA).

The integrity operating windows (IOWs) predicted by H2Compass in Figure 3 show that we can reduce the operating temperature to 378°C or reduce the operating pressure to 8.8 MPa. By reducing the operating temperature to the predicted IOWs (Figures 4 and 5), the selected metallurgy has moderate resistance to high temperature hydrogen attack (HTHA), and the remaining time to incipient attack (or the incubation period) is 2.264 years. H2Compass recommends scheduling for the HTHA inspection and assessment.

Equipment Location/ID	bypass line#1	in catalytic ref	ormer				
Operating Temperature (OT)	°C	378.00		Material of Construction	1Cr0.5Mo		~
H2 Partial Pressure (OP)	MPa	10.000		Predicted H Concentration in S	Steel	ppm	1.599
Component Operating Hours	hours	50,000		Internal H2 Pressure at H Trap	s in Steel	MPa	9.290e+2
Low Temperature Hydrogen Damage	w Temperature Hydrogen Damages (HB/HIC/SOHIC/SWC HE/HSC/SSC/SZC)			High Tem	perature Hydroge	en Attack (HTHA	v)
PWHT and Pre-Heating Requirements	с	Mo	Cr	Temperature Limit at Operation	ng Pressure	°C	378.44
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operatin	g Temperature	MPa	10.016
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	Attack	years	n/a
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	No	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	n/a		
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	nent Interval	years	not required
Reduce the hardness and/or the atomic H	concentration ir	ı steel.		HTHA Inspection	n, Assessment, and	d Monitoring N	/lethods
	Raj.	22M		n/a			
221	G R		5 Contract	гн	HA Control and P	revention	
and a		S.		The selected material is NOT and H2 partial pressure.	susceptible to HTH	HA under the o	perating temperature

H2Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 4 Reducing the operating temperature to the predicted integrity operating windows (IoWs) for high temperature high pressure hydrogen services.

Equipment Location/ID	bypass line#1	in catalytic ref	ormer				
Operating Temperature (OT)	°C	425.00		Material of Construction	1Cr0.5Mo		~
H2 Partial Pressure (OP)	MPa	8.800		Predicted H Concentration in S	Steel	ppm	2.100
Component Operating Hours	hours	5,000		Internal H2 Pressure at H Trap	s in Steel	MPa	1.603e+3
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC	/SWC HE/HSC	/ssc/szc)	High Tem	perature Hydroge	en Attack (HTHA)
PWHT and Pre-Heating Requirements	с	Мо	Cr	Temperature Limit at Operatir	ng Pressure	°C	430.14
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operating	g Temperature	MPa	8.881
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	ttack	years	n/a
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	No	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	n/a		
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	ient Interval	years	not required
Reduce the hardness and/or the atomic H	concentration ir	n steel.		HTHA Inspection	n, Assessment, and	d Monitoring N	/lethods
	Raj.	Ter		n/a			
221	a K		5 Contract	нт	HA Control and P	revention	
and a		ST.	-0-	The selected material is NOT and H2 partial pressure.	susceptible to HTH	HA under the op	perating temperature

H2Compass[®] Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 5 Reducing the operating pressure to the predicted integrity operating windows (IoWs) for high temperature high pressure hydrogen services.

If adjusting the operating temperature and pressure options are not feasible or desirable, the other option recommended by H2Compass is to change the metallurgy. Figure 6 shows other low alloy steels, stainless steels and alloys available for consideration. Under the operating conditions shown in Figure 3, H2Compass predicts that alloy 1.25Cr0.5Mo is also susceptible to high temperature hydrogen attack (HTHA). The next grade of alloy in the H2Compass database, 2.25Cr1.0Mo, is not susceptible to high temperature hydrogen attack, with the safe operating temperature limit of 507°C (Figure 7).

Equipment Location/ID	bypass line#1 in catalytic reformer							
Operating Temperature (OT)	°C	425.00	Material of Construction		1Cr0.5Mo 🗸			
H2 Partial Pressure (OP)	MPa	10.000		Predicted H Concentration in S	α-iron Carbon Steel welded no PWHT			
Component Operating Hours	hours	100,000		Internal H2 Pressure at H Trap: CS non-welded or welded with PWHT				
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC,	/SWC HE/HSC	/ssc/szc)	High Tem	C-0.5Mo Normalized			
PWHT and Pre-Heating Requirements	с	Mo	Cr	Temperature Limit at Operatin	1.25Cr0.5Mo			
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operating	2.25Cr1.0Mo			
					3Cr1.0Mo			
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	3Cr1.0MoV			
Susceptible	0.450	0.001	0.001	HTHA Risk Banking as per API	6Cr0.5Mo			
	0.450	0.001	0.001	THE REAL REAL PLACE	9Cr1MoV			
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	AISI 304			
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	Inconel 600			
Reduce the hardness and/or the atomic H	concentration in	steel.		HTHA Inspection	, Assessment, and Monitoring Methods			
	Raj.	M	VT for bulging/blistering; WFN microvoid/fissures/cracks	/IT/PT/MT for surface cracks; FMR/RT for				
27.1	S Y		Santal	нті	HA Control and Prevention			
Options to prevent HTHA: (1) Reduce the operating temperature to IOW lim Reduce the H2 partial pressure to IOW limit; (3) Upgrade the metallurgy								
		H2Compass	© Ver 9.20 ©	1995 - 2020 WebCorr Corrosion	n Consultina Services			

Figure 6 H2Compass for evaluation and verification of alloy selection for high temperature high pressure hydrogen services.

112001112833 . 11100	ening and i rear		emperature n	yarogen barnages and riigh	remperature riyu	rogen Attack	
Equipment Location/ID	bypass line#1	bypass line#1 in catalytic reformer					
Operating Temperature (OT)	°C	425.00		Material of Construction	2.25Cr1.0Mo		~
H2 Partial Pressure (OP)	MPa	10.000		Predicted H Concentration in	Steel	ppm	2.239
Component Operating Hours	hours	100,000		Internal H2 Pressure at H Trap	ps in Steel	MPa	1.822e+3
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC	/SWC HE/HSC	(HSC/SSC/SZC) High Temperature Hydrogen Attack			n Attack (HTHA	.)
PWHT and Pre-Heating Requirements	с	Мо	Cr	Temperature Limit at Operati	ng Pressure	°C	507.06
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operatir	ng Temperature	MPa	100.000
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Ni Remaining Time to Incipient Attack		years	n/a
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per AP	581	No	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	n/a		
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessr	nent Interval	years	not required
Reduce the hardness and/or the atomic H	concentration in	n steel.		HTHA Inspectio	n, Assessment, and	Monitoring N	/lethods
	Raj-	IIN		n/a			
- Ti	and the		South &	н	THA Control and Pr	evention	
La da		- T		The selected material is NOT and H2 partial pressure,	susceptible to HTH	IA under the op	perating temperature

H2Compass®: Modeling and Prediction of Low Temperature Hydrogen Damages and High Temperature Hydrogen Attack

H2Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 7 H2Compass predicts the safe operating temperature limit of alloy steels for high temperature high pressure hydrogen services.

H2Compass is a powerful software that can provide instant answers to the following questions: How to select alloy steels for resistance to low temperature hydrogen damages? How to calculate hydrogen concentration in steels? How to calculate internal hydrogen gas pressure in steels? How to determine if post-weld heat treatment (PWHT) or pre-heating is required? How to assess the susceptibility of an alloy steel to low temperature hydrogen damages such as hydrogen blistering (HB), hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), stepwise cracking (SWC), hydrogen embrittlement (HE), hydrogen stress cracking (HSC), sulfide stress cracking (SSC), and soft zone cracking (SZC)?

When hydrogen partial pressure is used as input, H2Compass computes the hydrogen concentration in steel at the prevailing operating temperature, and the internal hydrogen pressure at hydrogen traps in the steel upon cooling to ambient temperature. When the hydrogen concentration in steel is used as input (Figure 8), H2Compass computes the hydrogen gas pressure at the prevailing operating temperature, and the internal hydrogen pressure at hydrogen traps in the steel upon cooling to ambient temperature (Figure 9).

9

Equipment Location/ID	bypass line#1	bypass line#1 in catalytic reformer					
Operating Temperature (OT)	°C	525.00		Material of Construction	1Cr0.5Mo		*
H2 Partial Pressure (OP)	MPa	2.900		Predicted H Concentration in S	Steel	ppm	2.163
H Concentration in Steel H2 Partial Pressure (OP)	hours	100,000		Internal H2 Pressure at H Trap	s in Steel	MPa	1.701e+3
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC,	/SWC HE/HSC/	/ssc/szc)	High Tem	perature Hydroge	en Attack (HTHA	4)
PWHT and Pre-Heating Requirements	с	Mo	Cr	Temperature Limit at Operation	ng Pressure	°C	518.96
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operatin	g Temperature	MPa	2.636
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	Attack	years	0.000
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	High	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	Internal decarbur	rization, fissurir	ng, and cracking
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	nent Interval	years	Overdue
Reduce the hardness and/or the atomic H	concentration in	steel.		HTHA Inspection, Assessment, and Monitoring Methods			
	VT for bulging/blistering; WFMT/PT/MT for surface cracks; FMR/RT for microvoid/fissures/cracks			IR/RT for			
271	S Y		States	н	HA Control and P	revention	
	Sale A	SI		Options to prevent HTHA: (1) Reduce the H2 partial pressu	Reduce the opera re to IOW limit; (3)	ating temperatu) Upgrade the r	ure to IOW limit; (2) metallurgy
		H2Compass	© Ver 9.20 ©	1995 - 2020 WebCorr Corrosio	n Consultina Servi	ices	

Figure 8 Hydrogen concentration in steel is used as input to assess the risk of low temperature hydrogen damages.

Equipment Location/ID	bypass line#1	in catalytic ref	ormer				
Operating Temperature (OT)	°C	425.00		Material of Construction	1Cr0.5Mo		~
H Concentration in Steel	ppm	1.000		H2 Pressure at Specified Temp	erature	MPa	1.995
Component Operating Hours	hours	100,000		Internal H2 Pressure at H Trap	s in Steel	MPa	3.634e+2
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC	/SWC HE/HSC	ISC/SSC/SZC) High Temperature Hydrogen Attack (HTHA))
PWHT and Pre-Heating Requirements	с	Мо	Cr	Temperature Limit at Operatin	ng Pressure	°C	540.30
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operatin	g Temperature	MPa	8.881
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	Attack	years	n/a
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	No	
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	n/a		
Susceptible	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	nent Interval	years	not required
Reduce the hardness and/or the atomic H	concentration ir	ı steel.		HTHA Inspection	n, Assessment, an	d Monitoring N	1ethods
	Raj-	TEN		n/a			
2. Li	a K	A H	Satt	нт	HA Control and P	revention	
	- All	3 T	-0-1-	The selected material is NOT and H2 partial pressure.	susceptible to HT	HA under the op	perating temperature

H2Compass®: Modeling and Prediction of Low Temperature Hydrogen Damages and High Temperature Hydrogen Attack

H2Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 9 H2Compass predicts the susceptibility of a steel to low temperature hydrogen damages. At 1 ppm hydrogen concentration in the low alloy 1Cr0.5Mo (Figure 9), the internal hydrogen gas pressure at hydrogen traps is predicted to be 363 MPa. H2Compass makes an overall assessment of other factors such as the hardness and equivalent carbon content of the steel to determine the susceptibility to low temperature hydrogen damages and the requirements for post-weld heat treatment (PWHT). Mouse-over tips help users of H2Compass to accurately carry out the modeling and prediction of low temperature hydrogen damages and high temperature hydrogen attack (Figure 10).

······································									
Equipment Location/ID	bypass line#1	in catalytic ref	ormer						
Operating Temperature (OT)	°C	425.00		Material of Construction	1Cr0.5Mo		~		
H Concentration in Steel 🗸	ppm	1.000]	H2 Pressure at Specified Temp	erature	MPa	1.995		
Component Operating Hours	hours	100,000		Internal H2 Pressure at H Trap	s in Steel	MPa	3.634e+2		
Low Temperature Hydrogen Damage	s (HB/HIC/SOHIC	/SWC HE/HSC	/SSC/SZC)	High Tem	perature Hydroge	n Attack (HTHA)		
PWHT and Pre-Heating Requirements	с	Мо	Cr	Temperature Limit at Operatin	ng Pressure	°C	540.30		
PWHT is required.	0.100	0.500	1.000	H2 Pressure Limit at Operating	g Temperature	MPa	8.881		
Susceptibility to HB/HIC/SOHIC/SWC	Mn	Cu	Ni	Remaining Time to Incipient A	ttack	years	n/a		
Susceptible	0.450	0.001	0.001	HTHA Risk Ranking as per API	581	No			
Susceptibility to HE/HSC/SSC/SZC	Hardness	HRC	40	Expected Form of HTHA	n/a				
HE: Hydrogen Embrittlement	Equivalent Ca	rbon Content	0.500	HTHA Inspection and Assessm	ent Interval	years	not required		
R HSC: Hydrogen Stress Cracking SSC: Sulfide Stress Cracking	oncentration ir	n steel.		HTHA Inspection	, Assessment, and	Monitoring N	lethods		
SZC: Soft Zone Cracking	Est.	Sale	1 B	n/a					
high strength steels in localized hard zones in weldment (soft zones for	To and	A.		нт	HA Control and Pr	revention			
SZC). Applied stress and/or residual stress have critical effect on cracking.	Ser.	2 C		The selected material is NOT s and H2 partial pressure.	susceptible to HTH	A under the op	erating temperature		

UDC	f I and Tanana analysis I budget	and Dense and a stand Utable 7	Francisco a sector and the second sector of Address in the
HZUOMDASS*: Wodeling and Prediction of	ot Low Temperature Hydrog	en Damages and High	lemberature Hydrogen Attack
incompass innoucing and incarction o	- Lott remperature manage	en bannages and mgn	en per a care i ny ai ogen i i caon

H2Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services

Figure 10 H2Compass predicts the concentration of dissolved hydrogen in steels and alloys and the susceptibility to low temperature hydrogen damages.

The powerful applications of H2Compass are truly unlimited in engineering design, materials selection, process operation, inspection and maintenance, modeling and prediction of low temperature hydrogen damages and high temperature hydrogen attack (HTHA). Click here to contact us for licensing details and experience the power of H2Compass.

H2Compass, giving you the right directions in the Modeling and Prediction of Low Temperature Hydrogen Damages and High Temperature Hydrogen Attack (HTHA) Home | Contact Us | PDF Copyright © 1995-2020. All rights reserved.