

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Coatings | Materials | CP



Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support

# **Overview and Application Examples of EVS-Compass - Extreme Value Statistics for Corrosion Modeling** and Corrosion Life Prediction

Extreme value statistics (EVS) has been used since the 1950s for extrapolating corrosion damages (maximum pit depth, crevice depth, crack depth etc.) from small lab samples, field coupons, or partial coverage inspection blocks to larger area of structures and assets at present or future times. WebCorr's EVS-Compass is the only device and OS independent EVS software on the market for corrosion modeling and life prediction of corrodible structures. Designers, OEM engineers, consultants, operation personnel, maintenance and inspection engineers, and government regulators can quickly and accurately determine:

- 1. the time to first leak or perforation;



- 2. the number of leaks or perforation at any given time;
- 3. the time to **N**th leak or perforation for any given number of **N**;
- 4. the area of perforation holes;
- 5. the depth of the largest pit at any given time;
- 6. the depth of the **N**th largest pit at any given time;
- 7. the number of pits exceeding a given depth **D** at any given time;
- 8. the time required for **N** pits to exceed the depth of **D**;
- 9. the probability of failure (POF) at a given time and a given wall thickness;
- 10. the service life for a given wall thickness at a given POF threshold;

- 11. the maximum surface area for EVS extrapolation in partial coverage inspection;
- 12. the recommended area for lab coupons or inspection blocks for EVS extrapolation in space and in time;
- 13. the recommended number of lab coupons or inspection blocks for EVS extrapolation in space and in time;
- 14. the charts showing (a) pit depth vs service life; (b) pit depth vs area; (c) probability of failure vs service life; (d) probability of failure vs area; (e) probability of failure vs wall thickness.

The probability of failure (POF) is an important factor in API 580 Risk-Based Inspection and API 581 Risk-Based Inspection Methodology. EVS-Compass is a powerful EVS software tool that goes beyond the prediction of the probability of failure (POF) in time (POF vs service life) and in space (POF vs area, POF vs wall-thickness), it predicts **the time to FIRST leak or perforation**, **the number of leaks at any given time**, **the depth of corrosion and the number of pits exceeding the specified depth at any future time**. For partial coverage inspection, EVS-Compass determines both the size and number of inspection blocks to minimize uncertainties. The unique capabilities of EVS-Compass help assets owners, operators, and government regulators make quantitative risk-based decisions pertaining to the future conditions and operations of structures and assets.

EVS-Compass is a cloud-based software that works on any device running any OS without the need for users to install or download anything. Figure 1 below shows an overview of the user interface of EVS-Compass.

EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Structures

| Structure ID                                                             | Type 316L stainless st        | teel coupons in c | hloride soultio                                                                                                                               | on at 50oC                                                    |                |                 |            |
|--------------------------------------------------------------------------|-------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|-----------------|------------|
| Material of construction                                                 | Stainless Steels 🗸            | ]                 | Note on Data                                                                                                                                  | Entry                                                         |                |                 |            |
| Service environment                                                      | Chemicals 🗸                   |                   | <ol> <li>Enter the actual remaining wall thickness in mm.</li> <li>Enter the surface area of the coupon or inspection block in m2.</li> </ol> |                                                               |                | in m2.          |            |
| Remaining wall thickness, d                                              | mm                            | 12.700            | 3. Enter the e                                                                                                                                | 3. Enter the exposure time in ascending order from dataset 1. |                | 1.              |            |
| Area of coupons or inspection blocks, $A_C$                              | m <sup>2</sup>                | 0.00258           | 5. Each datase                                                                                                                                | et consists of a                                              | number of coup | ons or inspecti | on blocks. |
| Total surface area of the structure, ${\rm A}_{\rm T}$                   | m <sup>2</sup>                | 0.0929            | Dataset 1                                                                                                                                     | Dataset 2                                                     | Dataset 3      | Dataset 4       | Dataset 5  |
| Service life or exposure                                                 | time for each dataset         | Days 🗸            | 2.063                                                                                                                                         | 6.007                                                         | 15.771         | 18.885          | 22.000     |
| Number of datasets used for a                                            | nalysis and prediction        | 3                 | 0.531                                                                                                                                         | 0.930                                                         | 0.902          | 1.478           | 1.181      |
| Prediction of Leaks or                                                   | Perforations                  |                   | 0.640                                                                                                                                         | 1.011                                                         | 1.135          | 1.552           | 1.389      |
| Service life or exposure time for prediction, t                          | Days                          | 4015.000          | 0.775                                                                                                                                         | 1.011                                                         | 1.273          | 1.651           | 1.397      |
| Time to first leak or perforation, $t_1$                                 | Days                          | 882               |                                                                                                                                               | 1.011                                                         | 1.344          | 1.857           | 1.443      |
| Number of leaks or perforations at time t, N <sub>t</sub>                | No./m <sup>2</sup>            | 675               |                                                                                                                                               | 1.036                                                         | 1.379          | 1.857           | 1.461      |
| Time to ${\it Nth}$ leak or perforation, t <sub>N</sub>                  | Days                          | 8871              |                                                                                                                                               | 1.054                                                         | 1.506          | 2.030           | 1.542      |
|                                                                          | N =                           | = 100             | Ì                                                                                                                                             | 1.118                                                         | 1.613          | 2.030           | 1.577      |
| Area of perforation holes, A <sub>H</sub>                                | % total                       | 9.955%            |                                                                                                                                               | 1.326                                                         | 1.641          | 2.101           | 1.588      |
| Prediction of Maximun                                                    | n Depth of Pits               |                   |                                                                                                                                               |                                                               | ĺ              |                 | 1.595      |
| Depth of the largest pit at time t, D <sub>t</sub>                       | mm                            | 24.532            | -                                                                                                                                             |                                                               | í              |                 | 1.669      |
| Depth of the $\it Nth$ largest pit at time t, $\it D_N$                  | mm                            | 8.999             |                                                                                                                                               |                                                               | í –            |                 | 1.676      |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>          | No./m <sup>2</sup>            | 2318              |                                                                                                                                               |                                                               |                |                 | 1.694      |
|                                                                          | <i>D</i> (mm) =               | 0.500             | <u> </u>                                                                                                                                      |                                                               |                |                 | 1.715      |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub> | Days                          | 5                 |                                                                                                                                               |                                                               | ·              | ·               | 1.768      |
| Probability of Fail                                                      | ure (POF)                     |                   |                                                                                                                                               |                                                               | í –            |                 | 1.776      |
| Probability of failure at time t and wall th                             | ickness d, POF <sub>t,d</sub> | 100.000%          |                                                                                                                                               |                                                               |                |                 | )          |
| Service life for wall thickness d, t <sub>d</sub>                        | Days                          | 170               |                                                                                                                                               |                                                               |                | ·               | )          |
| at the user defi                                                         | ned POF threshold of          | 5.000%            | <u> </u>                                                                                                                                      |                                                               |                |                 |            |
| EVS for Optimization of Partial C                                        | overage Inspection (PC        | CI)               |                                                                                                                                               |                                                               |                |                 |            |
| Max area (m <sup>2</sup> ) of EVS extrapolation under                    | er the current settings       | 2.010             |                                                                                                                                               |                                                               |                | ,               |            |
|                                                                          |                               |                   |                                                                                                                                               |                                                               |                | ,               |            |
|                                                                          |                               |                   |                                                                                                                                               |                                                               | <u> </u>       | ,               |            |
|                                                                          |                               |                   |                                                                                                                                               | <u> </u>                                                      | <u> </u>       | /               |            |
| Mavimum Pit Denth, mm                                                    | Max Pit Depth vs Tim          | ne 🗸              |                                                                                                                                               |                                                               |                | /               | )          |
|                                                                          |                               | +                 |                                                                                                                                               |                                                               |                | /               |            |
| 26.000                                                                   |                               |                   |                                                                                                                                               |                                                               |                | /               |            |
| 22.000 -                                                                 |                               | ALCONTRACT.       |                                                                                                                                               |                                                               |                | l               | )[         |
| 20.000 -                                                                 |                               |                   |                                                                                                                                               | Į                                                             | Į              | ļ               | ļ          |
| 18.000                                                                   |                               |                   |                                                                                                                                               |                                                               |                |                 |            |
| 14.000 -                                                                 |                               |                   |                                                                                                                                               |                                                               |                |                 |            |
| 12.000                                                                   |                               |                   |                                                                                                                                               |                                                               |                | <u> </u>        |            |
| 10.000                                                                   |                               |                   |                                                                                                                                               |                                                               |                |                 |            |
| 8.000 -                                                                  |                               |                   | A State                                                                                                                                       |                                                               | 1 200          |                 |            |
| 6.000                                                                    |                               |                   | BC REAL                                                                                                                                       | 1 Salar                                                       |                |                 |            |
| 4.000                                                                    |                               |                   |                                                                                                                                               | Rail A                                                        |                | The last        |            |
| 2.000                                                                    |                               |                   | 2                                                                                                                                             | Sec.                                                          |                |                 |            |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

Figure 1 EVS-Compass: Extreme Value Statistics software for corrosion modeling and corrosion life prediction

of structures and assets.

EVS-Compass Application Example No.1

Prediction of Pitting Corrosion in Type 316L Stainless Steel: EVS Extrapolation in Space and in Time

In Figure 1 above, type 316L stainless steel coupons of 2" by 2" (4 in<sup>2</sup>= 0.00258 m<sup>2</sup>) with a thickness of 0.5" (12.7 mm) were immersed in chloride solution at 50<sup>o</sup>C for durations ranging from 49.50 hours to 528 hours (2.063 to 22 days) in the laboratory. For each exposure duration, a number of identical coupons (from 3 to 15) were used. The maximum pit depth on each coupon was measured and entered in EVS-Compass. The 5 exposure durations produced 5 datasets. For a surface area of 1 ft<sup>2</sup> (12"x12"=144 in<sup>2</sup>=0.0929 m<sup>2</sup>), EVS-

Compass predicts that:

(1) the time to first leak or perforation of the 12.7 mm plate is882 days;

(2) after 11 years (4015 days), the number of leaks or

perforation holes is 63 (675x0.0929=63);

(3) the time to *100*th leak or perforation is 8871 days (24.3 years);

- (4) the hole area at 11 years is 9.955% of the total surface area;
- (5) the depth of the largest pit at 11 years is 24.532 mm;
- (6) the depth of the 100th largest pit at 11 years is 8.999 mm;

(7) the number of pits exceeding 0.5 mm at 11 years is 215 (2318x0.0929=215);

- (8) the time for the first 100 pits to exceed 0.5 mm is 5 days;
- (9) the probability of failure at 11 years for wall thickness of 12.7 mm is 100%;
- (10) the service life for wall thickness of 12.7 mm at 5% probability of failure is 170 days;
- (11) For partial coverage inspection (PCI), the maximum area of EVS extrapolation under the current settings

is 2.01 m<sup>2</sup>.

EVS-Compass is designed with end-users in mind without the usual learning curve associated with a new software. Users simply enter the basic information such as material, service environment, area of coupons or inspection blocks, total surface area of the structure, exposure time and durations, and the maximum pit depth for each coupon or inspection block at each exposure duration. Figures 2-5 show the options for materials, service environments, exposure time, and type of charts to display.



| EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Struct | ctures |
|---------------------------------------------------------------------------------------------|--------|
|---------------------------------------------------------------------------------------------|--------|

| Structure ID                                                                                                                           | Type 316L stainless st                                                                                          | Type 316L stainless steel coupons in chloride soultion at 50oC |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     |                            |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|
| Material of construction<br>Service environment<br>Remaining wall thickness, d<br>Area of coupons or inspection blocks, A <sub>C</sub> | Carbon Steels<br>Carbon Steels<br>Low Alloy Steels<br>Stainless Steels<br>Nickel-base Alloys<br>Aluminum Alloys | 12.700<br>0.00258                                              | Note on Data<br>1. Enter the au<br>2. Enter the su<br>3. Enter the ex<br>4. Enter the m<br>5. Each datase | Entry<br>ctual remaining<br>urface area of th<br>xposure time in<br>aximum pit dep<br>et consists of a r | wall thickness i<br>ne coupon or in<br><b>ascending ord</b> o<br>oth in mm in <b>as</b><br>number of coup | in mm.<br>spection block i<br>er from dataset<br>cending order.<br>ons or inspectio | in m2.<br>1.<br>on blocks. |
| Total surface area of the structure, $A_T$                                                                                             | Others                                                                                                          | 100.0000                                                       | Dataset 1                                                                                                 | Dataset 2                                                                                                | Dataset 3                                                                                                 | Dataset 4                                                                           | Dataset 5                  |
| Service life or exposure                                                                                                               | time for each dataset                                                                                           | Days 🗸                                                         | 2.063                                                                                                     | 6.007                                                                                                    | 15.771                                                                                                    | 18.885                                                                              | 22.000                     |
| Number of datasets used for a                                                                                                          | nalysis and prediction                                                                                          | 3                                                              | 0.531                                                                                                     | 0.930                                                                                                    | 0.902                                                                                                     | 1.478                                                                               | 1.181                      |
| Prediction of Leaks or                                                                                                                 | Perforations                                                                                                    |                                                                | 0.640                                                                                                     | 1.011                                                                                                    | 1.135                                                                                                     | 1.552                                                                               | 1.389                      |
| Service life or exposure time for prediction, t                                                                                        | Days                                                                                                            | 365.000                                                        | 0.775                                                                                                     | 1.011                                                                                                    | 1.273                                                                                                     | 1.651                                                                               | 1.397                      |
| Time to first leak or perforation, $t_1$                                                                                               | Days                                                                                                            | 787                                                            |                                                                                                           | 1.011                                                                                                    | 1.344                                                                                                     | 1.857                                                                               | 1.443                      |
| Number of leaks or perforations at time t, N <sub>t</sub>                                                                              | No./m <sup>2</sup>                                                                                              | 0                                                              |                                                                                                           | 1.036                                                                                                    | 1.379                                                                                                     | 1.857                                                                               | 1.461                      |
| Time to ${\it Nth}$ leak or perforation, t <sub>N</sub>                                                                                | Days                                                                                                            | 814                                                            |                                                                                                           | 1.054                                                                                                    | 1.506                                                                                                     | 2.030                                                                               | 1.542                      |
|                                                                                                                                        | <b>N</b> =                                                                                                      | 100                                                            |                                                                                                           | 1.118                                                                                                    | 1.613                                                                                                     | 2.030                                                                               | 1.577                      |
| Area of perforation holes, A <sub>H</sub>                                                                                              | % total                                                                                                         | 0.000%                                                         |                                                                                                           | 1.326                                                                                                    | 1.641                                                                                                     | 2.101                                                                               | 1.588                      |
| Prediction of Maximun                                                                                                                  | n Depth of Pits                                                                                                 |                                                                |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     | 1.595                      |
| Depth of the largest pit at time t, $D_t$                                                                                              | mm                                                                                                              | 9.095                                                          |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     | 1.669                      |
| Depth of the $\textit{Nth}$ largest pit at time t, $\textit{D}_{N}$                                                                    | mm                                                                                                              | 8.963                                                          |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     | 1.676                      |
| No. of pits exceeding depth $D$ at time t, $N_{Dt}$                                                                                    | No./m <sup>2</sup>                                                                                              | 0                                                              |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     | 1.694                      |
|                                                                                                                                        | <i>D</i> (mm) =                                                                                                 | 0.500                                                          |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     | 1.715                      |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub>                                                               | Days                                                                                                            | 0                                                              |                                                                                                           |                                                                                                          |                                                                                                           |                                                                                     | 1.768                      |

Figure 2 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures and assets: option for Material of Construction

| Structure ID                                                           | Type 316L stainless st      | eel coupons in c | hloride soultio                   | on at 50oC                           |                                     |                            |                 |  |
|------------------------------------------------------------------------|-----------------------------|------------------|-----------------------------------|--------------------------------------|-------------------------------------|----------------------------|-----------------|--|
| Material of construction                                               | Carbon Steels 🗸 🗸           |                  | Note on Data                      | Entry                                |                                     |                            |                 |  |
| Service environment                                                    | Chemicals 🗸                 |                  | 1. Enter the a<br>2. Enter the su | ctual remaining<br>urface area of tl | wall thickness i<br>he coupon or in | in mm.<br>spection block i | in m2.          |  |
| Remaining wall thickness, d                                            | Atmosphere                  | 12.700           | 3. Enter the e                    | xposure time in                      | ascending orde                      | er from dataset            | from dataset 1. |  |
| Area of coupons or inspection blocks, ${\sf A}_{\sf C}$                | Underground                 | 0.00258          | 5. Each datase                    | et consists of a r                   | number of coup                      | ons or inspectio           | on blocks.      |  |
| Total surface area of the structure, A <sub>T</sub>                    | Chemicals<br>m <sup>2</sup> | 100.0000         | Dataset 1                         | Dataset 2                            | Dataset 3                           | Dataset 4                  | Dataset 5       |  |
| Service life or exposure                                               | time for each dataset       | Days 🗸           | 2.063                             | 6.007                                | 15.771                              | 18.885                     | 22.000          |  |
| Number of datasets used for a                                          | nalysis and prediction      | 3                | 0.531                             | 0.930                                | 0.902                               | 1.478                      | 1.181           |  |
| Prediction of Leaks or                                                 | Perforations                |                  | 0.640                             | 1.011                                | 1.135                               | 1.552                      | 1.389           |  |
| Service life or exposure time for prediction, t                        | Days                        | 365.000          | 0.775                             | 1.011                                | 1.273                               | 1.651                      | 1.397           |  |
| Time to first leak or perforation, $t_1$                               | Days                        | 787              |                                   | 1.011                                | 1.344                               | 1.857                      | 1.443           |  |
| Number of leaks or perforations at time t, N <sub>t</sub>              | No./m <sup>2</sup>          | 0                |                                   | 1.036                                | 1.379                               | 1.857                      | 1.461           |  |
| Time to ${\it Nth}$ leak or perforation, t <sub>N</sub>                | Days                        | 814              |                                   | 1.054                                | 1.506                               | 2.030                      | 1.542           |  |
|                                                                        | N =                         | 100              |                                   | 1.118                                | 1.613                               | 2.030                      | 1.577           |  |
| Area of perforation holes, $A_H$                                       | % total                     | 0.000%           |                                   | 1.326                                | 1.641                               | 2.101                      | 1.588           |  |
| Prediction of Maximun                                                  | n Depth of Pits             |                  |                                   |                                      |                                     |                            | 1.595           |  |
| Depth of the largest pit at time t, D <sub>t</sub>                     | mm                          | 9.095            |                                   |                                      |                                     |                            | 1.669           |  |
| Depth of the $\it Nth$ largest pit at time t, D <sub>N</sub>           | mm                          | 8.963            |                                   |                                      |                                     |                            | 1.676           |  |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>        | No./m <sup>2</sup>          | 0                |                                   |                                      |                                     |                            | 1.694           |  |
|                                                                        | <i>D</i> (mm) =             | 0.500            |                                   |                                      |                                     |                            | 1.715           |  |
| Time Required for <b>N</b> pits to Exceed <b>D</b> mm, t <sub>ND</sub> | Days                        | 0                |                                   |                                      |                                     |                            | 1.768           |  |

EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Structures

Figure 3 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: option for Service Environment.

| Structure ID                                                                        | Type 316L stainless st            | teel coupons in c | hloride soultio                                                                                                                                                                                                                                                                                                | on at 50oC               |                  |           |           |
|-------------------------------------------------------------------------------------|-----------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------|-----------|
| Material of construction<br>Service environment                                     | Stainless Steels V<br>Chemicals V |                   | Note on Data<br>1. Enter the av                                                                                                                                                                                                                                                                                | Entry<br>ctual remaining | wall thickness i | in mm.    | in m2     |
| Remaining wall thickness, d<br>Area of coupons or inspection blocks, A <sub>C</sub> | mm<br>m²                          | 12.700<br>0.00258 | <ol> <li>2. Enter the surface area of the coupon or inspection block in m2.</li> <li>3. Enter the exposure time in ascending order from dataset 1.</li> <li>4. Enter the maximum pit depth in mm in ascending order.</li> <li>5. Each dataset consists of a number of coupons or inspection blocks.</li> </ol> |                          |                  |           |           |
| Total surface area of the structure, $A_T$                                          | m²                                | 100.0000          | Dataset 1                                                                                                                                                                                                                                                                                                      | Dataset 2                | Dataset 3        | Dataset 4 | Dataset 5 |
| Service life or exposure                                                            | time for each dataset             | Days 🗸            | 2.063                                                                                                                                                                                                                                                                                                          | 6.007                    | 15.771           | 18.885    | 22.000    |
| Number of datasets used for a                                                       | nalysis and prediction            | Hours<br>Days     | 0.531                                                                                                                                                                                                                                                                                                          | 0.930                    | 0.902            | 1.478     | 1.181     |
| Prediction of Leaks or                                                              | Perforations                      | Weeks             | 0.640                                                                                                                                                                                                                                                                                                          | 1.011                    | 1.135            | 1.552     | 1.389     |
| Service life or exposure time for prediction, t                                     | Days                              | Years             | 0.775                                                                                                                                                                                                                                                                                                          | 1.011                    | 1.273            | 1.651     | 1.397     |
| Time to first leak or perforation, $t_{\rm 1}$                                      | Days                              | 787               |                                                                                                                                                                                                                                                                                                                | 1.011                    | 1.344            | 1.857     | 1.443     |
| Number of leaks or perforations at time t, $\ensuremath{N}_t$                       | No./m <sup>2</sup>                | 0                 |                                                                                                                                                                                                                                                                                                                | 1.036                    | 1.379            | 1.857     | 1.461     |
| Time to $\textit{Nth}$ leak or perforation, $t_N$                                   | Days                              | 814               |                                                                                                                                                                                                                                                                                                                | 1.054                    | 1.506            | 2.030     | 1.542     |
|                                                                                     | N :                               | = 100             |                                                                                                                                                                                                                                                                                                                | 1.118                    | 1.613            | 2.030     | 1.577     |
| Area of perforation holes, A <sub>H</sub>                                           | % total                           | 0.000%            |                                                                                                                                                                                                                                                                                                                | 1.326                    | 1.641            | 2.101     | 1.588     |
| Prediction of Maximun                                                               | n Depth of Pits                   |                   |                                                                                                                                                                                                                                                                                                                |                          |                  |           | 1.595     |
| Depth of the largest pit at time t, $D_t$                                           | mm                                | 9.095             |                                                                                                                                                                                                                                                                                                                |                          |                  |           | 1.669     |
| Depth of the $\it Nth$ largest pit at time t, $\it D_N$                             | mm                                | 8.963             |                                                                                                                                                                                                                                                                                                                |                          |                  |           | 1.676     |
| No. of pits exceeding depth $D$ at time t, $N_{Dt}$                                 | No./m <sup>2</sup>                | 0                 |                                                                                                                                                                                                                                                                                                                |                          |                  |           | 1.694     |
|                                                                                     | <i>D</i> (mm) =                   | 0.500             |                                                                                                                                                                                                                                                                                                                |                          |                  |           | 1.715     |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub>            | Days                              | 0                 |                                                                                                                                                                                                                                                                                                                |                          |                  |           | 1.768     |

Figure 4 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures and assets: option for Exposure Time.

| Probability of Fa                                   | lure (POF)                                  |                |       |   |          | 1.776 |
|-----------------------------------------------------|---------------------------------------------|----------------|-------|---|----------|-------|
| Probability of failure at time t and wall t         | hickness d, POF <sub>t,d</sub>              | 100.000%       |       |   |          |       |
| Service life for wall thickness d, t                | d Days                                      | 49             |       |   |          |       |
| at the user de                                      | fined POF threshold of                      | 5.000%         |       |   |          |       |
| EVS for Optimization of Partial                     | Coverage Inspection (PC                     | CI)            |       |   |          |       |
| Max area (m <sup>2</sup> ) of EVS extrapolation und | ler the current settings                    | 2.010          |       |   |          |       |
| Two options to extend EVS extrapolation to the      | e total area of the stru                    | cture:         |       | Î |          |       |
| 1. Increase the number of inspe                     | ction blocks from 15 to                     | 29             |       |   |          |       |
| OR 2. Increase the min. area (sq.m)                 | of inspection blocks to                     | 0.1284         |       | ĺ |          |       |
| Maximum Pit Depth, mm                               | Max Pit Depth vs Are                        | ea 🗸 🗸         |       |   |          |       |
|                                                     | Max Pit Depth vs Tir<br>Max Pit Depth vs Ar | ne<br>ea       |       |   |          |       |
| 9.100 -                                             | Probability of Failur                       | e vs Time      |       | ſ |          |       |
| 9.090 -                                             | Probability of Failure                      | e vs Area      | <br>l | { | <u> </u> |       |
| 9.080                                               | Probability of Failure                      | e vs Thickness |       |   |          |       |
|                                                     |                                             |                |       |   |          |       |
| 9.070                                               |                                             |                | <br>  | { | ļ        |       |
| 9.060                                               |                                             |                |       |   |          |       |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

Figure 5 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: option for different types of plots.

**EVS extrapolation in space and in time**: The surface area of coupons used in laboratory tests was 4 in<sup>2</sup> (0.00258 m<sup>2</sup>) for a maximum duration of 22 days. Figure 6 shows prediction results by EVS-Compass when the surface area is extrapolated to 2.58 m<sup>2</sup> (1000 times) and the exposure time to 365 days. The time to first leak or perforation is 800 days, the time to **100**th leak or perforation is 1028 days. For partial coverage inspection (PCI), EVS-Compass determines that the maximum surface area for extrapolation is 2.02 m<sup>2</sup>. EVS-Compass recommends two options to extend the extrapolation to the total surface area of the structure: (1) by increasing the number of inspection blocks from the current 15 to 16; or by increasing the minimum surface area of the inspection blocks from the current 0.00258 m<sup>2</sup> to 0.0033 m<sup>2</sup>. The probability of failure vs. service life is selected in Figure 6. In Figure 7, the probability of failure vs. surface area is selected. Figure 8 show the plot of the probability of failure vs. wall thickness.

#### 7

EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Structures

| Structure ID                                                             | Type 316L stainless st         | eel coupons in | chloride soultio                                                                                                                                | on at 50oC                       |                |                                   |            |
|--------------------------------------------------------------------------|--------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-----------------------------------|------------|
| Material of construction                                                 | Stainless Steels 🗸 🗸           |                | Note on Data Entry<br>1. Enter the actual remaining wall thickness in mm.<br>2. Enter the surface area of the coupon or inspection block in m2. |                                  |                |                                   |            |
| Service environment                                                      | Chemicals 🗸                    | ]              |                                                                                                                                                 |                                  |                | in m2.                            |            |
| Remaining wall thickness, d                                              | mm                             | 12.700         | 3. Enter the e<br>4. Enter the m                                                                                                                | xposure time in<br>aximum pit de | ascending orde | er from dataset<br>cending order. | 1.         |
| Area of coupons or inspection blocks, ${\rm A}_{\rm C}$                  | m <sup>2</sup>                 | 0.00258        | 5. Each datase                                                                                                                                  | et consists of a r               | number of coup | ons or inspectio                  | on blocks. |
| Total surface area of the structure, ${\rm A}_{\rm T}$                   | m <sup>2</sup>                 | 2.5800         | Dataset 1                                                                                                                                       | Dataset 2                        | Dataset 3      | Dataset 4                         | Dataset 5  |
| Service life or exposure                                                 | time for each dataset          | Days •         | • 2.063                                                                                                                                         | 6.007                            | 15.771         | 18.885                            | 22.000     |
| Number of datasets used for a                                            | nalysis and prediction         | 3              | 0.531                                                                                                                                           | 0.930                            | 0.902          | 1.478                             | 1.181      |
| Prediction of Leaks or                                                   | Perforations                   |                | 0.640                                                                                                                                           | 1.011                            | 1.135          | 1.552                             | 1.389      |
| Service life or exposure time for prediction, t                          | Days                           | 365.000        | 0.775                                                                                                                                           | 1.011                            | 1.273          | 1.651                             | 1.397      |
| Time to first leak or perforation, t <sub>1</sub>                        | Days                           | 800            |                                                                                                                                                 | 1.011                            | 1.344          | 1.857                             | 1.443      |
| Number of leaks or perforations at time t, N <sub>t</sub>                | No./m <sup>2</sup>             | 0              |                                                                                                                                                 | 1.036                            | 1.379          | 1.857                             | 1.461      |
| Time to ${\it N} th$ leak or perforation, t <sub>N</sub>                 | Days                           | 1028           |                                                                                                                                                 | 1.054                            | 1.506          | 2.030                             | 1.542      |
|                                                                          | N =                            | 100            |                                                                                                                                                 | 1.118                            | 1.613          | 2.030                             | 1.577      |
| Area of perforation holes, A <sub>H</sub>                                | % total                        | 0.000%         |                                                                                                                                                 | 1.326                            | 1.641          | 2.101                             | 1.588      |
| Prediction of Maximum                                                    | n Depth of Pits                |                |                                                                                                                                                 |                                  |                |                                   | 1.595      |
| Depth of the largest pit at time t, $D_t$                                | mm                             | 9.029          |                                                                                                                                                 |                                  |                |                                   | 1.669      |
| Depth of the $\it Nth$ largest pit at time t, D <sub>N</sub>             | mm                             | 8.099          |                                                                                                                                                 |                                  |                |                                   | 1.676      |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>          | No./m <sup>2</sup>             | 0              |                                                                                                                                                 |                                  |                |                                   | 1.694      |
|                                                                          | <i>D</i> (mm) =                | 0.500          |                                                                                                                                                 |                                  |                |                                   | 1.715      |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub> | Days                           | 1              |                                                                                                                                                 |                                  |                |                                   | 1.768      |
| Probability of Fail                                                      | ure (POF)                      |                |                                                                                                                                                 |                                  |                |                                   | 1.776      |
| Probability of failure at time t and wall th                             | iickness d, POF <sub>t,d</sub> | 100.000%       |                                                                                                                                                 |                                  |                |                                   |            |
| Service life for wall thickness d, t <sub>d</sub>                        | Days                           | 86             |                                                                                                                                                 |                                  |                |                                   |            |
| at the user defi                                                         | ned POF threshold of           | 5.000%         |                                                                                                                                                 |                                  |                |                                   |            |
| EVS for Optimization of Partial C                                        | overage Inspection (PC         | 1)             |                                                                                                                                                 |                                  |                |                                   |            |
| Max area (m <sup>2</sup> ) of EVS extrapolation under                    | er the current settings        | 2.010          |                                                                                                                                                 |                                  |                |                                   |            |
| Two options to extend EVS extrapolation to the                           | e total area of the struc      | :ture:         |                                                                                                                                                 |                                  |                |                                   |            |
| 1. Increase the number of inspec                                         | tion blocks from 15 to         | 16             | <u> </u>                                                                                                                                        |                                  |                |                                   |            |
| OR 2. Increase the min. area (sq.m)                                      | of inspection blocks to        | 0.0033         | <u> </u>                                                                                                                                        |                                  |                |                                   |            |
| Probability of Failure                                                   | Probability of Failure         | vs Time        | •                                                                                                                                               |                                  |                |                                   |            |
|                                                                          |                                | +              |                                                                                                                                                 |                                  |                |                                   |            |
| 1.000                                                                    |                                |                | <u> </u>                                                                                                                                        |                                  |                |                                   |            |
| 0.900                                                                    |                                |                |                                                                                                                                                 |                                  |                | <u> </u>                          |            |
| 0.800 - 0.700 -                                                          |                                |                |                                                                                                                                                 |                                  |                |                                   | l          |
| 0.600 -                                                                  |                                |                |                                                                                                                                                 |                                  | ļ              | []                                | l          |
| 0.500 -                                                                  |                                |                |                                                                                                                                                 | ļ                                | ļ              | ļ                                 | ļ          |
| 0.400 -                                                                  |                                |                |                                                                                                                                                 |                                  |                |                                   |            |
| 0.200                                                                    |                                |                |                                                                                                                                                 | 100                              | 100            | 1-10                              |            |
| 0.100 -                                                                  |                                |                | Se Sel                                                                                                                                          | 1- 100-                          |                |                                   |            |
| 0.000                                                                    |                                |                | _ //                                                                                                                                            | Call Com                         |                | 1 A                               |            |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

## Figure 6 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: Probability of Failure vs. Service Life.

EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Structures

|                                 | Structure ID Ty                           | pe 316L stainless st       | eel coupons in c                        | hloride soultio                                        | n at 50oC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                   |            |
|---------------------------------|-------------------------------------------|----------------------------|-----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|------------|
| Mat                             | erial of construction St                  | tainless Steels 🗸 🗸        |                                         | Note on Data                                           | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                                   |            |
| 5                               | Service environment Cl                    | hemicals 🗸 🗸               |                                         | <ol> <li>Enter the ac</li> <li>Enter the su</li> </ol> | tual remaining:<br>Irface area of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wall thickness i<br>ne coupon or in: | n mm.<br>spection block i         | n m2.      |
| Remain                          | ing wall thickness, d                     | mm                         | 12.700                                  | 3. Enter the ex<br>4. Enter the m                      | posure time in<br>aximum pit dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ascending orde<br>oth in mm in asc   | r from dataset :<br>ending order. | 1.         |
| Area of coupons or i            | nspection blocks, A <sub>C</sub>          | m <sup>2</sup>             | 0.00258                                 | 5. Each datase                                         | t consists of a r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | number of coup                       | ons or inspectio                  | on blocks. |
| Total surface area              | of the structure, $A_T$                   | m <sup>2</sup>             | 50.0000                                 | Dataset 1                                              | Dataset 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dataset 3                            | Dataset 4                         | Dataset 5  |
| Se                              | ervice life or exposure tim               | ne for each dataset        | Days 🗸                                  | 2.063                                                  | 6.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.771                               | 18.885                            | 22.000     |
| Number                          | of datasets used for anal                 | ysis and prediction        | 3                                       | 0.531                                                  | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.902                                | 1.478                             | 1.181      |
|                                 | Prediction of Leaks or Pe                 | rforations                 |                                         | 0.640                                                  | 1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.135                                | 1.552                             | 1.389      |
| Service life or exposure        | time for prediction, t                    | Days                       | 365.000                                 | 0.775                                                  | 1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.273                                | 1.651                             | 1.397      |
| Time to first l                 | leak or perforation, t <sub>1</sub>       | Days                       | 788                                     |                                                        | 1.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.344                                | 1.857                             | 1.443      |
| Number of leaks or per          | forations at time t, N <sub>t</sub>       | No./m <sup>2</sup>         | 0                                       |                                                        | 1.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.379                                | 1.857                             | 1.461      |
| Time to <b>N</b> th I           | eak or perforation, t <sub>N</sub>        | Days                       | 828                                     |                                                        | 1.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.506                                | 2.030                             | 1.542      |
|                                 |                                           | N =                        | 100                                     |                                                        | 1.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.613                                | 2.030                             | 1.577      |
| Area of                         | perforation holes, A <sub>H</sub>         | % total                    | 0.000%                                  |                                                        | 1.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.641                                | 2.101                             | 1.588      |
| Р                               | rediction of Maximum D                    | epth of Pits               |                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 1.595      |
| Depth of the la                 | rgest pit at time t, D <sub>t</sub>       | mm                         | 9.090                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 1.669      |
| Depth of the <b>N</b> th la     | rgest pit at time t, D <sub>N</sub>       | mm                         | 8.899                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 1.676      |
| No. of pits exceeding (         | depth <b>D</b> at time t, N <sub>Dt</sub> | No./m <sup>2</sup>         | 0                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 1.694      |
|                                 |                                           | <i>D</i> (mm) =            | 0.500                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ĺ                                 | 1.715      |
| Time Required for <b>N</b> pits | to Exceed <b>D</b> mm, t <sub>ND</sub>    | Days                       | 0                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 1.768      |
|                                 | Probability of Failure                    | (POF)                      |                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   | 1.776      |
| Probability of failure          | e at time t and wall thick                | ness d, POF <sub>t,d</sub> | 100.000%                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| Service life f                  | or wall thickness d, t <sub>d</sub>       | Days                       | 54                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
|                                 | at the user defined                       | d POF threshold of         | 5.000%                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| EVS for Op                      | timization of Partial Cove                | erage Inspection (PC       | l)                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ĺ                                 |            |
| Max area (m²) of E              | VS extrapolation under t                  | he current settings        | 2.010                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ĺ                                 |            |
| Two options to extend EV        | /S extrapolation to the to                | tal area of the struc      | ture:                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 1. Increase                     | the number of inspection                  | n blocks from 15 to        | 26                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ĺ                                 |            |
| OR 2. Increase                  | the min. area (sq.m) of in                | nspection blocks to        | 0.0642                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ĺ                                 |            |
| Probability of Failure          | Pr                                        | robability of Failure      | vs Area 🗸 🗸                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 1 000 7                         |                                           |                            | ÷                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 0.900 -                         |                                           |                            | 000000000000000000000000000000000000000 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 0.800 -                         |                                           |                            |                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 0.700 -                         |                                           |                            |                                         | <u> </u>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 0.600 -                         |                                           |                            |                                         |                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                   |            |
| 0.500                           |                                           |                            |                                         |                                                        | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                    |                                   |            |
| 0.300                           |                                           |                            |                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 0.200                           |                                           |                            |                                         | 1.                                                     | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 - AR                               | 1-1-1                             | CAN BE AN  |
| 0.100                           |                                           |                            |                                         | 29.24                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                   |            |
| 0.000 -                         |                                           |                            |                                         | - //                                                   | Contraction of the local division of the loc |                                      | 100                               |            |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

# Figure 7 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: Probability of Failure vs. Surface Area.

| EVS-Compass <sup>®</sup> 9.20 | Extreme Value Sta | atistics for Service Life | Prediction of | Corrodible Structures |
|-------------------------------|-------------------|---------------------------|---------------|-----------------------|
|-------------------------------|-------------------|---------------------------|---------------|-----------------------|

| Structure ID                                                             | Type 316L stainless st         | eel coupons  | in cł | nloride soultio                                                                                                                               | on at 50oC       |                |                   |            |
|--------------------------------------------------------------------------|--------------------------------|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------------|------------|
| Material of construction                                                 | Stainless Steels 🗸             |              |       | Note on Data                                                                                                                                  | Entry            |                |                   |            |
| Service environment                                                      | Chemicals 🗸                    |              |       | <ol> <li>Enter the actual remaining wall thickness in mm.</li> <li>Enter the surface area of the coupon or inspection block in m2.</li> </ol> |                  |                | in m2.            |            |
| Remaining wall thickness, d                                              | mm                             | 25.000       |       | 3. Enter the ex                                                                                                                               | xposure time in  | ascending orde | er from dataset   | 1.         |
| Area of coupons or inspection blocks, $A_{C}$                            | m <sup>2</sup>                 | 0.00258      |       | 5. Each datase                                                                                                                                | et consists of a | number of coup | ons or inspection | on blocks. |
| Total surface area of the structure, $A_T$                               | m <sup>2</sup>                 | 2.5800       |       | Dataset 1                                                                                                                                     | Dataset 2        | Dataset 3      | Dataset 4         | Dataset 5  |
| Service life or exposure                                                 | time for each dataset          | Days         | ~     | 2.063                                                                                                                                         | 6.007            | 15.771         | 18.885            | 22.000     |
| Number of datasets used for a                                            | analysis and prediction        | 3            |       | 0.531                                                                                                                                         | 0.930            | 0.902          | 1.478             | 1.181      |
| Prediction of Leaks of                                                   | r Perforations                 |              |       | 0.640                                                                                                                                         | 1.011            | 1.135          | 1.552             | 1.389      |
| Service life or exposure time for prediction, t                          | Days                           | 365.000      |       | 0.775                                                                                                                                         | 1.011            | 1.273          | 1.651             | 1.397      |
| Time to first leak or perforation, $t_1$                                 | Days                           | 3803         |       |                                                                                                                                               | 1.011            | 1.344          | 1.857             | 1.443      |
| Number of leaks or perforations at time t, N <sub>t</sub>                | No./m <sup>2</sup>             | 0            |       |                                                                                                                                               | 1.036            | 1.379          | 1.857             | 1.461      |
| Time to <b>N</b> th leak or perforation, t <sub>N</sub>                  | Days                           | 4885         |       |                                                                                                                                               | 1.054            | 1.506          | 2.030             | 1.542      |
|                                                                          | N =                            | 100          |       |                                                                                                                                               | 1.118            | 1.613          | 2.030             | 1.577      |
| Area of perforation holes, A <sub>H</sub>                                | % total                        | 0.000%       |       |                                                                                                                                               | 1.326            | 1.641          | 2.101             | 1.588      |
| Prediction of Maximur                                                    | n Depth of Pits                |              |       |                                                                                                                                               |                  |                |                   | 1.595      |
| Depth of the largest pit at time t, $D_t$                                | mm                             | 9.029        |       |                                                                                                                                               |                  |                |                   | 1.669      |
| Depth of the $\mathit{Nth}$ largest pit at time t, $D_{N}$               | mm                             | 8.099        |       |                                                                                                                                               |                  |                |                   | 1.676      |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>          | No./m <sup>2</sup>             | 0            |       |                                                                                                                                               |                  |                |                   | 1.694      |
|                                                                          | <i>D</i> (mm) =                | 0.500        |       |                                                                                                                                               |                  |                |                   | 1.715      |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub> | Days                           | 1            |       |                                                                                                                                               |                  |                |                   | 1.768      |
| Probability of Fail                                                      | ure (POF)                      |              |       |                                                                                                                                               |                  |                |                   | 1.776      |
| Probability of failure at time t and wall th                             | nickness d, POF <sub>t,d</sub> | 2.617%       |       |                                                                                                                                               |                  |                |                   |            |
| Service life for wall thickness d, $t_d$                                 | Days                           | 409          |       |                                                                                                                                               |                  |                |                   |            |
| at the user defi                                                         | ined POF threshold of          | 5.000%       |       |                                                                                                                                               |                  | ĺ              |                   |            |
| EVS for Optimization of Partial C                                        | overage Inspection (PC         | :1)          |       |                                                                                                                                               |                  | ĺ              |                   |            |
| Max area (m <sup>2</sup> ) of EVS extrapolation und                      | er the current settings        | 2.010        |       |                                                                                                                                               |                  | ĺ              |                   |            |
| Two options to extend EVS extrapolation to the                           | e total area of the strue      | cture:       |       |                                                                                                                                               |                  | ĺ              |                   |            |
| 1. Increase the number of inspec                                         | ction blocks from 15 to        | 16           |       |                                                                                                                                               |                  | ĺ              |                   |            |
| OR 2. Increase the min. area (sq.m)                                      | of inspection blocks to        | 0.0033       |       |                                                                                                                                               |                  | ĺ              |                   |            |
| Probability of Failure                                                   | Probability of Failure         | vs Thickness | ~     |                                                                                                                                               |                  |                |                   |            |
|                                                                          |                                | 4            | ŀ     |                                                                                                                                               |                  |                |                   |            |
| 1.000                                                                    |                                |              |       |                                                                                                                                               |                  |                |                   |            |
| 0.900                                                                    |                                |              |       |                                                                                                                                               | <u> </u>         | Î              |                   |            |
| 0.700 -                                                                  |                                |              |       |                                                                                                                                               |                  |                |                   |            |
| 0.600 -                                                                  |                                |              |       |                                                                                                                                               |                  | Į              | Ļ                 | l          |
| 0.500                                                                    |                                |              |       |                                                                                                                                               |                  |                |                   |            |
| 0.400                                                                    |                                |              |       |                                                                                                                                               |                  |                |                   |            |
| 0.300                                                                    |                                |              |       | Contraction of                                                                                                                                |                  | Л              | IL                |            |
| 0.200                                                                    |                                |              |       | 8                                                                                                                                             | 12               |                |                   |            |
| 0.100                                                                    | •••••                          |              |       |                                                                                                                                               | all a            |                | 2                 |            |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

## Figure 8 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: Probability of Failure vs. Wall Thickness.

## **EVS-Compass Application Example No.2**

Prediction of Pitting Corrosion in Aluminum Alloy: EVS Extrapolation in Space and in Time

Figures 9 and 10 show another application example of EVS-Compass in corrosion modeling and life prediction. Aluminum alloy Alcan 2S-O coupons of 129 cm<sup>2</sup> were immersed in Kingston tap water at 25<sup>o</sup>C for various durations from 7 to 365 days. Maximum pit depth on each coupon at 5 exposure durations is entered into EVS-Compass as shown in Figure 9 below. For a large structure with an area of 1000 m<sup>2</sup> (that is 77,519 times of the area of coupons) and a wall thickness of 2.54 mm, EVS-Compass predicts that:

(1) the time to first leak or perforation is 991 days;

(2) the number of leaks or perforation after 5 years (1825 days) is  $24/m^2$ ;

- (3) the time to the **100**th leak or perforation is 997 days;
- (4) the hole area after 5 years exposure is 21% of the total surface area;

(5) the depth of the largest pit on the 1000  $m^2$  surface area after 5 years is 3.09 mm;

- (6) the number pits exceeding 1.27 mm after 5 years is  $108/m^2$ ;
- (7) the time required for the first 100 pits to exceed 1.27 mm is 98 days;
- (8) the probability of failure at 5 years for the wall thickness of 2.54 mm on the 1000 m<sup>2</sup> surface is 100%;
- (9) the service life for the wall thickness of 2.54 mm in the 1000 m<sup>2</sup> surface is 3 days at the POF of 5%;
- (10) for partial coverage inspection, the maximum area of extrapolation is 0.809 m<sup>2</sup>;
- (11) EVS-Compass recommends two options to extend EVS extrapolation to the entire surface area of the
- structure: (a) by increasing the number of coupons or inspection blocks from the current 10 to 32; (b) by

increasing the area of coupons or inspection blocks to 15.9438 m<sup>2</sup> (shown in Figure 10 below);

(12) the maximum pit depth vs. service life is plotted in Figure 9.

11

| EVS-Compass® 9.20 | Extreme Value Statistics | for Service Life | Prediction of | Corrodible Structures |
|-------------------|--------------------------|------------------|---------------|-----------------------|
|-------------------|--------------------------|------------------|---------------|-----------------------|

| Structure ID                                                   | Alcan 2S-O coupons immersed in Kingston tap water at 25oC |                |                                                                                                                                                                                                                                                                                  |                    |                |                    |            |
|----------------------------------------------------------------|-----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|--------------------|------------|
| Material of construction                                       | Aluminum Alloys 🗸                                         |                | Note on Data Entry                                                                                                                                                                                                                                                               |                    |                |                    |            |
| Service environment                                            | Water Immersion 🖌                                         |                | <ol> <li>Enter the actual remaining wall thickness in mm.</li> <li>Enter the surface area of the coupon or inspection block in m2.</li> <li>Enter the exposure time in ascending order from dataset 1.</li> <li>Enter the maximum nit denth in mm in ascending order.</li> </ol> |                    |                |                    | in m2.     |
| Remaining wall thickness, d                                    | mm                                                        | 2.540          |                                                                                                                                                                                                                                                                                  |                    |                |                    | 1.         |
| Area of coupons or inspection blocks, ${\rm A}_{\rm C}$        | m <sup>2</sup>                                            | 0.01290        | 5. Each datase                                                                                                                                                                                                                                                                   | et consists of a r | number of coup | oons or inspection | on blocks. |
| Total surface area of the structure, $A_T$                     | m <sup>2</sup>                                            | 1000.0000      | Dataset 1                                                                                                                                                                                                                                                                        | Dataset 2          | Dataset 3      | Dataset 4          | Dataset 5  |
| Service life or exposure                                       | time for each dataset                                     | Days 🗸         | 7.000                                                                                                                                                                                                                                                                            | 30.000             | 90.000         | 180.000            | 365.000    |
| Number of datasets used for a                                  | nalysis and prediction                                    | 5              | 0.180                                                                                                                                                                                                                                                                            | 0.460              | 0.480          | 0.620              | 0.640      |
| Prediction of Leaks or                                         | Perforations                                              |                | 0.266                                                                                                                                                                                                                                                                            | 0.500              | 0.578          | 0.620              | 0.680      |
| Service life or exposure time for prediction, t                | Days                                                      | 1825.000       | 0.290                                                                                                                                                                                                                                                                            | 0.510              | 0.610          | 0.620              | 0.700      |
| Time to first leak or perforation, t <sub>1</sub>              | Days                                                      | 991            | 0.306                                                                                                                                                                                                                                                                            | 0.580              | 0.610          | 0.680              | 0.760      |
| Number of leaks or perforations at time t, N <sub>t</sub>      | No./m <sup>2</sup>                                        | 24             | 0.334                                                                                                                                                                                                                                                                            | 0.580              | 0.610          | 0.680              | 0.800      |
| Time to <b>N</b> th leak or perforation, t <sub>N</sub>        | Days                                                      | 997            | 0.340                                                                                                                                                                                                                                                                            | 0.640              | 0.660          | 0.720              | 0.810      |
|                                                                | N =                                                       | 100            | 0.340                                                                                                                                                                                                                                                                            | 0.654              | 0.690          | 0.740              | 0.820      |
| Area of perforation holes, A <sub>H</sub>                      | % total                                                   | 21.081%        | 0.410                                                                                                                                                                                                                                                                            | 0.680              | 0.718          | 0.740              | 0.840      |
| Prediction of Maximun                                          | n Depth of Pits                                           |                | 0.410                                                                                                                                                                                                                                                                            | 0.692              | 0.760          | 0.760              | 0.840      |
| Depth of the largest pit at time t, D,                         | mm                                                        | 3.050          | 0.545                                                                                                                                                                                                                                                                            | 0.692              | 0.798          | 0.760              | 0.900      |
| Depth of the <b>N</b> th largest pit at time t, D <sub>N</sub> | mm                                                        | 3.044          | <u> </u>                                                                                                                                                                                                                                                                         |                    |                | {                  | 1          |
| No. of pits exceeding depth <b>D</b> at time t. No.            | No./m <sup>2</sup>                                        | 108            |                                                                                                                                                                                                                                                                                  |                    |                | ¦                  | I          |
|                                                                | <i>D</i> (mm) =                                           | 1.270          |                                                                                                                                                                                                                                                                                  |                    |                | {                  | I          |
| Time Required for <b>N</b> nits to Exceed <b>D</b> mm. two     | Davs                                                      | 98             |                                                                                                                                                                                                                                                                                  |                    | I              | <u> </u>           | I          |
| Probability of Fail                                            | ure (POF)                                                 |                |                                                                                                                                                                                                                                                                                  |                    | I              | <u> </u>           | I          |
| Probability of failure at time t and wall th                   | ickness d. POF                                            | 100.000%       | <u> </u>                                                                                                                                                                                                                                                                         |                    | I              | {                  | 1          |
| Service life for wall thickness d t .                          | Davs                                                      | 3              | <u> </u>                                                                                                                                                                                                                                                                         | <u> </u>           | l              | <u>}</u>           | ļ          |
| service life for wait the user defi                            | nod DOE thrashold of                                      | 5<br>E 000%    |                                                                                                                                                                                                                                                                                  |                    |                | <u> </u>           | I          |
| EVC for Optimization of Partial C                              | average Inspection (DC                                    | 1)             |                                                                                                                                                                                                                                                                                  |                    |                | <u> </u>           | I          |
| Evision Optimization of Partial Co                             | overage inspection (PC                                    | 0.800          |                                                                                                                                                                                                                                                                                  |                    | l              | <u> </u>           | Į          |
| Max area (m <sup>-</sup> ) of EVS extrapolation unde           | er the current settings                                   | 0.809          |                                                                                                                                                                                                                                                                                  | <u> </u>           |                | <u> </u>           | Į          |
| Two options to extend EVS extrapolation to the                 | e total area of the struc                                 | cture:         |                                                                                                                                                                                                                                                                                  |                    |                | <u> </u>           | Į          |
| 1. Increase the number of inspec                               | tion blocks from 10 to                                    | 32             |                                                                                                                                                                                                                                                                                  | ļ                  |                | Į                  | ļ          |
| OR 2. Increase the min. area (sq.m)                            | of inspection blocks to                                   | 15.9438        | <u> </u>                                                                                                                                                                                                                                                                         | ļ                  |                | Į                  | Į          |
| Maximum Pit Depth, mm                                          | Max Pit Depth vs Tim                                      | e 🗸            | ļ                                                                                                                                                                                                                                                                                | ļ                  | [              | Į                  | Į          |
| 3.200 -                                                        |                                                           | +              |                                                                                                                                                                                                                                                                                  | ļ                  | Į              | Į                  | Į          |
| 3.000 - 2.800 -                                                |                                                           | 10000000000000 | ļ                                                                                                                                                                                                                                                                                | ļ                  | ļ              | ļ                  | ļ          |
| 2.600 -                                                        | 69-26-5 C                                                 |                |                                                                                                                                                                                                                                                                                  |                    |                |                    |            |
| 2.400 -                                                        |                                                           |                |                                                                                                                                                                                                                                                                                  |                    |                |                    |            |
| 2.200 - 2.000 -                                                |                                                           |                |                                                                                                                                                                                                                                                                                  | ¦                  |                | {                  |            |
| 1.800                                                          |                                                           |                |                                                                                                                                                                                                                                                                                  | Į                  | Į              | Į                  | Į          |
| 1.600 -                                                        |                                                           |                |                                                                                                                                                                                                                                                                                  |                    |                |                    |            |
| 1.400                                                          |                                                           |                |                                                                                                                                                                                                                                                                                  |                    | A              |                    |            |
| 1.200                                                          |                                                           |                | a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                            | 1                  | 1 and          | 1/10               |            |
| 0.800                                                          |                                                           |                | FR 5-1                                                                                                                                                                                                                                                                           |                    |                |                    |            |
| 0.600                                                          |                                                           |                |                                                                                                                                                                                                                                                                                  |                    | 1 1 1          | 100                |            |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

# Figure 9 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: aluminum alloy in Kingston tap water.

EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Structures

| Structure ID                                                           | Alcan 2S-O coupons immersed in Kingston tap water at 25oC |           |                                                                                                                                               |                          |                                         |           |           |
|------------------------------------------------------------------------|-----------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-----------|-----------|
| Material of construction                                               | Aluminum Alloys 🐱                                         |           | Note on Data Entry                                                                                                                            |                          |                                         |           |           |
| Service environment                                                    | Water Immersion 👻                                         |           | <ol> <li>Enter the actual remaining wall thickness in mm.</li> <li>Enter the surface area of the coupon or inspection block in m2.</li> </ol> |                          |                                         |           |           |
| Remaining wall thickness, d                                            | mm                                                        | 2.540     | 3. Enter the exposure time in ascending order from dataset 1.                                                                                 |                          |                                         |           |           |
| Area of coupons or inspection blocks, $A_C$                            | m²                                                        | 15.94380  | <ol> <li>Each dataset consists of a number of coupons or inspection blocks.</li> </ol>                                                        |                          |                                         |           |           |
| Total surface area of the structure, $A_T$                             | m²                                                        | 1000.0000 | Dataset 1                                                                                                                                     | Dataset 2                | Dataset 3                               | Dataset 4 | Dataset 5 |
| Service life or exposure                                               | time for each dataset                                     | Days 🗸    | 7.000                                                                                                                                         | 30.000                   | 90.000                                  | 180.000   | 365.000   |
| Number of datasets used for a                                          | nalysis and prediction                                    | 5         | 0.180                                                                                                                                         | 0.460                    | 0.480                                   | 0.620     | 0.640     |
| Prediction of Leaks of                                                 | Perforations                                              |           | 0.266                                                                                                                                         | 0.500                    | 0.578                                   | 0.620     | 0.680     |
| Service life or exposure time for prediction, t                        | Days                                                      | 1825.000  | 0.290                                                                                                                                         | 0.510                    | 0.610                                   | 0.620     | 0.700     |
| Time to first leak or perforation, t <sub>1</sub>                      | Days                                                      | 1038      | 0.306                                                                                                                                         | 0.580                    | 0.610                                   | 0.680     | 0.760     |
| Number of leaks or perforations at time t, N <sub>t</sub>              | No./m <sup>2</sup>                                        | 0         | 0.334                                                                                                                                         | 0.580                    | 0.610                                   | 0.680     | 0.800     |
| Time to <b>N</b> th leak or perforation, t <sub>N</sub>                | Days                                                      | 32853     | 0.340                                                                                                                                         | 0.640                    | 0.660                                   | 0.720     | 0.810     |
|                                                                        | N =                                                       | 100       | 0.340                                                                                                                                         | 0.654                    | 0.690                                   | 0.740     | 0.820     |
| Area of perforation holes, A <sub>H</sub>                              | % total                                                   | 0.017%    | 0.410                                                                                                                                         | 0.680                    | 0.718                                   | 0.740     | 0.840     |
| Prediction of Maximum                                                  | n Depth of Pits                                           |           | 0.410                                                                                                                                         | 0.692                    | 0.760                                   | 0.760     | 0.840     |
| Depth of the largest pit at time t, D <sub>t</sub>                     | mm                                                        | 3.007     | 0.545                                                                                                                                         | 0.692                    | 0.798                                   | 0.760     | 0.900     |
| Depth of the <b>N</b> th largest pit at time t, D <sub>N</sub>         | mm                                                        | 1.069     |                                                                                                                                               |                          |                                         |           |           |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>        | No./m <sup>2</sup>                                        | 0         |                                                                                                                                               |                          |                                         |           |           |
|                                                                        | <i>D</i> (mm) =                                           | 1.270     |                                                                                                                                               |                          |                                         |           |           |
| Time Required for <b>N</b> pits to Exceed <b>D</b> mm, t <sub>ND</sub> | Days                                                      | 3245      |                                                                                                                                               |                          |                                         |           |           |
| Probability of Fail                                                    | ure (POF)                                                 |           |                                                                                                                                               |                          |                                         |           |           |
| Probability of failure at time t and wall th                           | ickness d, POF <sub>t.d</sub>                             | 100.000%  | <u> </u>                                                                                                                                      |                          |                                         |           |           |
| Service life for wall thickness d, t <sub>d</sub>                      | Days                                                      | 22        | <u> </u>                                                                                                                                      |                          |                                         |           |           |
| at the user defi                                                       | ned POF threshold of                                      | 5.000%    |                                                                                                                                               |                          |                                         |           |           |
| EVS for Optimization of Partial C                                      | overage Inspection (PC                                    | 1)        | /                                                                                                                                             | <u> </u>                 |                                         |           |           |
| Max area (m <sup>2</sup> ) of EVS extrapolation und                    | er the current settings                                   | 1000.003  |                                                                                                                                               | <u> </u>                 |                                         |           |           |
|                                                                        | C C                                                       |           |                                                                                                                                               | <u> </u>                 |                                         |           |           |
|                                                                        |                                                           |           |                                                                                                                                               |                          |                                         |           |           |
|                                                                        |                                                           |           |                                                                                                                                               |                          | ]                                       |           |           |
| Maximum Pit Denth mm                                                   | Max Pit Depth vs Tim                                      | e 🗸       |                                                                                                                                               |                          |                                         |           |           |
| Maximum Pit Deptit, min                                                |                                                           | +         |                                                                                                                                               |                          |                                         |           |           |
| 3.200                                                                  |                                                           |           | <u> </u>                                                                                                                                      |                          |                                         |           | [         |
| 2.800                                                                  |                                                           |           |                                                                                                                                               |                          | l                                       |           | [         |
| 2.600 - 2.400 -                                                        | CRATCO COL                                                |           | ,                                                                                                                                             | ļ                        | Į                                       | Į         |           |
| 2.200 -                                                                |                                                           |           | ,                                                                                                                                             | ļ                        | ļ                                       |           |           |
| 2.000 -                                                                |                                                           |           |                                                                                                                                               |                          |                                         |           |           |
| 1.600                                                                  |                                                           |           |                                                                                                                                               | í —                      | í — — — — — — — — — — — — — — — — — — — |           |           |
| 1.400                                                                  |                                                           |           |                                                                                                                                               | <u>Д</u><br>7339////2006 |                                         |           |           |
| 1.200                                                                  |                                                           |           | 4                                                                                                                                             | 12                       |                                         | 27/5      |           |
| 0.800                                                                  |                                                           |           |                                                                                                                                               | ALL A                    |                                         | 210       |           |



EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

### Figure 10 Extreme Value Statistics software for corrosion modeling and corrosion life prediction of structures

and assets: Optimization of Partial Inspection Coverage

### **EVS-Compass Application Example No.3**

#### Partial Coverage Inspection of Pitting Corrosion in Oil Tank Bottom Plate: EVS Extrapolation in Space

Inspection of a large oil tank carbon steel base plate of 6 mm in thickness was carried out to determine the

maximum pit depth distribution. The whole surface area of the oil tank plate was 1040 m<sup>2</sup>. Due to time,

cost, and accessibility considerations, partial coverage inspection using 10 blocks of 1.85 m<sup>2</sup> each was randomly selected for pit depth measurements. The maximum pit depth on each of the inspection blocks was entered into EVS-Compass (one block showed no pitting and is not included in the data entry). Based on the maximum pit depth data measured using small inspection blocks of 1.85 m<sup>2</sup>, EVS-Compass predicts that the maximum pit depth in the 1040 m<sup>2</sup> base plate is 4.297 mm (Figure 11). The chart in Figure 11 shows the pit depth vs. surface area of the base plate. Other time-based predictions are not applicable in this application example for EVS extrapolation in space that has only one dataset available. For EVS extrapolation in time or in time and in space, at least two datasets collected at two different exposure times are required (Figures 1-10 above).

EVS-Compass® 9.20 Extreme Value Statistics for Service Life Prediction of Corrodible Structures

| Structure ID                                                             | Pitting in Oil Tank Bot       | ttom Plate        |                                                                                                                                                 |                                   |                |                                   |                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------|-------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material of construction                                                 | Carbon Steels 🗸 🗸             | ]                 | Note on Data Entry<br>1. Enter the actual remaining wall thickness in mm.<br>2. Enter the surface area of the coupon or inspection block in m2. |                                   |                |                                   |                                                                                                                                                                                                                                       |
| Service environment                                                      | Water Immersion 🗸             |                   |                                                                                                                                                 |                                   |                |                                   | in m2.                                                                                                                                                                                                                                |
| Remaining wall thickness, d                                              | mm                            | 6.000             | 3. Enter the ex<br>4. Enter the m                                                                                                               | kposure time in<br>Jaximum pit de | ascending ord  | er from dataset<br>cending order. | 1.                                                                                                                                                                                                                                    |
| Area of coupons or inspection blocks, ${\rm A}_{\rm C}$                  | m <sup>2</sup>                | 1.85000           | 5. Each datase                                                                                                                                  | et consists of a                  | number of coup | ons or inspecti                   | on blocks.                                                                                                                                                                                                                            |
| Total surface area of the structure, ${\rm A}_{\rm T}$                   | m <sup>2</sup>                | 1040.0000         | Dataset 1                                                                                                                                       | Dataset 2                         | Dataset 3      | Dataset 4                         | Dataset 5                                                                                                                                                                                                                             |
| Service life or exposure                                                 | time for each dataset         | Years 🗸           | 5.000                                                                                                                                           | 0.000                             | 0.000          | 0.000                             | 0.000                                                                                                                                                                                                                                 |
| Number of datasets used for a                                            | nalysis and prediction        | 1                 | 0.500                                                                                                                                           |                                   |                |                                   |                                                                                                                                                                                                                                       |
| Prediction of Leaks or                                                   | Perforations                  |                   | 0.500                                                                                                                                           |                                   | <u> </u>       |                                   |                                                                                                                                                                                                                                       |
| Service life or exposure time for prediction, t                          | Years                         | 5.000             | 0.500                                                                                                                                           |                                   | ĺ              |                                   |                                                                                                                                                                                                                                       |
| Time to first leak or perforation, $t_1$                                 | Years                         | n/a               | 1.000                                                                                                                                           |                                   | <u> </u>       |                                   |                                                                                                                                                                                                                                       |
| Number of leaks or perforations at time t, N <sub>t</sub>                | No./m <sup>2</sup>            | n/a               | 1.000                                                                                                                                           |                                   | <u> </u>       | ĺ                                 |                                                                                                                                                                                                                                       |
| Time to ${\it Nth}$ leak or perforation, t <sub>N</sub>                  | Years                         | n/a               | 1.000                                                                                                                                           |                                   | ĺ              | Î                                 | Î                                                                                                                                                                                                                                     |
|                                                                          | N                             | = 100             | 1.500                                                                                                                                           |                                   | ĺ              | ĺ                                 | Ì                                                                                                                                                                                                                                     |
| Area of perforation holes, A <sub>H</sub>                                | % total                       | n/a               | 1.500                                                                                                                                           |                                   | ĺ              | ĺ                                 | <u> </u>                                                                                                                                                                                                                              |
| Prediction of Maximun                                                    | n Depth of Pits               |                   | 3.000                                                                                                                                           |                                   | ĺ              | Î                                 | Î                                                                                                                                                                                                                                     |
| Depth of the largest pit at time t, $D_t$                                | mm                            | 4.297             |                                                                                                                                                 |                                   | ĺ              | Î                                 | Î                                                                                                                                                                                                                                     |
| Depth of the $\it Nth$ largest pit at time t, $\it D_N$                  | mm                            | n/a               |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | Ì                                                                                                                                                                                                                                     |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>          | No./m <sup>2</sup>            | n/a               |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | ,                                                                                                                                                                                                                                     |
|                                                                          | <i>D</i> (mm) =               | 0.500             |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | <u></u>                                                                                                                                                                                                                               |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub> | Years                         | 1                 |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | )                                                                                                                                                                                                                                     |
| Probability of Fail                                                      | ure (POF)                     |                   |                                                                                                                                                 |                                   | ĺ              | Î                                 | Î                                                                                                                                                                                                                                     |
| Probability of failure at time t and wall th                             | ickness d, POF <sub>t,d</sub> | 1.849%            |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | )                                                                                                                                                                                                                                     |
| Service life for wall thickness d, ${\rm t}_{\rm d}$                     | Years                         | 6                 |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | Ì                                                                                                                                                                                                                                     |
| at the user defi                                                         | ned POF threshold of          | 5.000%            |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | Ì                                                                                                                                                                                                                                     |
| EVS for Optimization of Partial Co                                       | overage Inspection (PC        | CI)               | ,                                                                                                                                               |                                   | ĺ              | Î                                 | ,                                                                                                                                                                                                                                     |
| Max area (m <sup>2</sup> ) of EVS extrapolation unde                     | er the current settings       | 4.283             |                                                                                                                                                 |                                   | ĺ              | ĺ                                 | ,                                                                                                                                                                                                                                     |
| Two options to extend EVS extrapolation to the                           | e total area of the strue     | cture:            |                                                                                                                                                 |                                   | í –            | ,                                 | ,                                                                                                                                                                                                                                     |
| 1. Increase the number of inspe                                          | ection blocks from 9 to       | 74                |                                                                                                                                                 |                                   |                | ,                                 | <u></u>                                                                                                                                                                                                                               |
| OR 2. Increase the min. area (sq.m)                                      | of inspection blocks to       | 449.2028          |                                                                                                                                                 |                                   | í –            | ,                                 | ,                                                                                                                                                                                                                                     |
| Maximum Pit Depth, mm                                                    | Max Pit Depth vs Are          | a 🗸               |                                                                                                                                                 |                                   | í –            | ,                                 | ,                                                                                                                                                                                                                                     |
|                                                                          |                               | +                 |                                                                                                                                                 |                                   | <u> </u>       | <u> </u>                          |                                                                                                                                                                                                                                       |
| 4.800 - 4.600                                                            |                               | 00000000000000000 |                                                                                                                                                 |                                   |                | /                                 |                                                                                                                                                                                                                                       |
| 4.400 -                                                                  |                               |                   |                                                                                                                                                 |                                   | í              | ¦                                 |                                                                                                                                                                                                                                       |
| 4.200 -                                                                  |                               |                   |                                                                                                                                                 | l                                 | {              | <u> </u>                          | Į                                                                                                                                                                                                                                     |
| 3.800 -                                                                  |                               |                   | ļ                                                                                                                                               | ļ                                 | ļ              | Į                                 | ļ                                                                                                                                                                                                                                     |
| 3.600                                                                    |                               |                   |                                                                                                                                                 |                                   |                |                                   |                                                                                                                                                                                                                                       |
| 3.200                                                                    |                               |                   |                                                                                                                                                 |                                   |                |                                   |                                                                                                                                                                                                                                       |
| 3.000                                                                    |                               |                   | 7.51 12 200                                                                                                                                     |                                   | Л              | Д                                 | Д<br>Приход на селото на<br>Приход на селото на с |
| 2.800 - 2.600 -                                                          |                               |                   | e                                                                                                                                               | 1 20                              | 16 1000        | 10                                |                                                                                                                                                                                                                                       |
| 2.400 -                                                                  |                               |                   | 1 m 1 m                                                                                                                                         |                                   |                |                                   |                                                                                                                                                                                                                                       |
| 2.200 -                                                                  |                               |                   |                                                                                                                                                 | Current and the                   | 1              | 100                               |                                                                                                                                                                                                                                       |



Figure 11 EVS-Compass predicts pitting depth in a large oil tank base plate of 1040 sq.m surface based on

the partial coverage inspection.

**EVS-Compass Application Example No.4** 

### Pitting Corrosion of Carbon Steel in Natural Seawater: EVS Extrapolation in Space and in Time

Carbon steel coupons of 75 mm x 50 mm were immersed in natural seawater for durations of 1.0, 1.5, 2.0,

3.0 and 4.0 years. Maximum pit depth for each coupon at each exposure duration is entered into EVS-

Compass (Figure 12). Note that the surface area of a coupon (with 2 sides) is 0.0075 m<sup>2</sup> (75 cm<sup>2</sup>). EVS

Extrapolation of the pit depth to a surface area of 75 m<sup>2</sup> (10000 times of the coupon area) and the a future

time of 10 years produces the following results:

- (1) the time to first leak or perforation is 9.084 years;
- (2) the number of leaks or perforation at 10 years is 2772 (75x36.954);
- (3) the time to 100th leak or perforation is 9.122 years;
- (4) the hole area at 10 years is 8.762%;
- (5) the time required for 100 pits to exceed 3 mm depth is 5.311 years;
- (6) the depth of the largest pit at 10 years is 6.786 mm;
- (7) the depth of the 100th largest pit is 6.75 mm;
- (8) the number of pits exceeding 3 mm depth at 10 years is 15358 (75x204.773);
- (9) the probability of failure at 10 years and 6mm thickness is 100%;
- (10) the service life for wall thickness of 6 mm at POF of 5% is 2.658 years

| EVS-Compass <sup>®</sup> 9.20 | Extreme Value Statistics | for Service Life Prediction of | of Corrodible Structures |
|-------------------------------|--------------------------|--------------------------------|--------------------------|
|-------------------------------|--------------------------|--------------------------------|--------------------------|

| Structure ID Carbon Steel Coupons Immersed in Natural Seawater at 20oC   |                                         |          |                                                                                                                                               |                                    |                |                                   |            |
|--------------------------------------------------------------------------|-----------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|-----------------------------------|------------|
| Material of construction                                                 | Carbon Steels 🔹                         |          | Note on Data Entry                                                                                                                            |                                    |                |                                   |            |
| Service environment                                                      | Water Immersion 🔻                       |          | <ol> <li>Enter the actual remaining wall thickness in mm.</li> <li>Enter the surface area of the coupon or inspection block in m2.</li> </ol> |                                    |                | in m2.                            |            |
| Remaining wall thickness, d                                              | mm                                      | 6.000    | 3. Enter the ex<br>4. Enter the m                                                                                                             | xposure time in<br>naximum pit dep | ascending orde | er from dataset<br>cending order. | 1.         |
| Area of coupons or inspection blocks, ${\rm A}_{\rm C}$                  | m <sup>2</sup>                          | 0.00750  | 5. Each datase                                                                                                                                | et consists of a r                 | number of coup | ons or inspectio                  | on blocks. |
| Total surface area of the structure, $A_T$                               | m <sup>2</sup>                          | 75.0000  | Dataset 1                                                                                                                                     | Dataset 2                          | Dataset 3      | Dataset 4                         | Dataset 5  |
| Service life or exposure                                                 | time for each dataset                   | Years 🔻  | 1.000                                                                                                                                         | 1.500                              | 2.000          | 3.000                             | 4.000      |
| Number of datasets used for a                                            | nalysis and prediction                  | 5        | 0.046                                                                                                                                         | 0.239                              | 0.259          | 0.200                             | 0.320      |
| Prediction of Leaks or                                                   | Perforations                            |          | 0.049                                                                                                                                         | 0.302                              | 0.311          | 0.201                             | 0.472      |
| Service life or exposure time for prediction, t                          | Years                                   | 10.000   | 0.097                                                                                                                                         | 0.324                              | 0.380          | 0.228                             | 0.571      |
| Time to first leak or perforation, ${\rm t_1}$                           | Years                                   | 9.084    | 0.098                                                                                                                                         | 0.326                              | 0.447          | 0.350                             | 0.637      |
| Number of leaks or perforations at time t, $\mathrm{N}_{\mathrm{t}}$     | No./m <sup>2</sup>                      | 36.954   | 0.169                                                                                                                                         | 0.394                              | 0.559          | 0.427                             | 0.693      |
| Time to $\textit{\textit{Nth}}$ leak or perforation, $t_{\rm N}$         | Years                                   | 9.122    | 0.233                                                                                                                                         | 0.523                              | 0.638          | 0.472                             | 0.702      |
|                                                                          | N =                                     | 100      | 0.244                                                                                                                                         | 0.540                              | 0.648          | 0.541                             | 0.759      |
| Area of perforation holes, $A_H$                                         | % total                                 | 8.762%   | 0.341                                                                                                                                         | 0.600                              | 0.851          | 0.546                             | 0.816      |
| Prediction of Maximum                                                    | Depth of Pits                           |          | 0.359                                                                                                                                         | 0.669                              | 0.876          | 0.558                             | 0.822      |
| Depth of the largest pit at time t, D <sub>t</sub>                       | mm                                      | 6.786    | 0.501                                                                                                                                         | 0.700                              | 0.885          | 0.560                             | 1.048      |
| Depth of the $\textit{Nth}$ largest pit at time t, $\textit{D}_{\rm N}$  | mm                                      | 6.750    | 0.504                                                                                                                                         | 0.717                              | 0.901          | 0.602                             | 1.080      |
| No. of pits exceeding depth <b>D</b> at time t, N <sub>Dt</sub>          | No./m <sup>2</sup>                      | 204.773  | 0.532                                                                                                                                         | 0.772                              | 0.938          | 0.624                             | 1.117      |
|                                                                          | <i>D</i> (mm) =                         | 3.000    | 0.556                                                                                                                                         | 0.823                              | 1.117          | 0.674                             | 1.133      |
| Time Required for ${\it N}$ pits to Exceed ${\it D}$ mm, t <sub>ND</sub> | Years                                   | 5.311    | 0.626                                                                                                                                         | 0.909                              | 1.235          | 0.746                             | 1.441      |
| Probability of Fail                                                      | ure (POF)                               |          |                                                                                                                                               | 0.982                              | 1.534          | 0.895                             | 1.631      |
| Probability of failure at time t and wall th                             | ickness d, POF <sub>t,d</sub>           | 100.000% |                                                                                                                                               | 1.038                              |                | 0.943                             | 2.208      |
| Service life for wall thickness d, t <sub>d</sub> Years                  |                                         | 2.658    |                                                                                                                                               |                                    |                | 1.081                             |            |
| at the user defined POF threshold of 5.00                                |                                         |          |                                                                                                                                               |                                    |                | 1.963                             |            |
| EVS for Optimization of Partial Co                                       | overage Inspection (PC                  | 1)       |                                                                                                                                               |                                    |                |                                   |            |
| Max area (m <sup>2</sup> ) of EVS extrapolation unde                     | er the current settings                 | 0.107    |                                                                                                                                               |                                    |                |                                   |            |
| Two options to extend EVS extrapolation to the                           | e total area of the struc               | ture:    |                                                                                                                                               |                                    |                |                                   |            |
| 1. Increase the number of inspec                                         | tion blocks from 18 to                  | 220      |                                                                                                                                               |                                    |                |                                   |            |
| OR 2. Increase the min. area (sq.m) of                                   | of inspection blocks to                 | 5.2695   |                                                                                                                                               |                                    |                |                                   |            |
| Maximum Pit Depth, mm                                                    | Max Pit Depth vs Are                    | a 🔻      |                                                                                                                                               |                                    |                |                                   |            |
|                                                                          |                                         | +        |                                                                                                                                               |                                    |                |                                   |            |
| 6.786                                                                    | 000000000000000000000000000000000000000 |          |                                                                                                                                               |                                    |                |                                   |            |
| 6.784 -                                                                  |                                         |          |                                                                                                                                               | í                                  |                |                                   |            |
| 6.782                                                                    |                                         |          |                                                                                                                                               |                                    |                | <u> </u>                          | l          |
| 6.780 -                                                                  |                                         |          |                                                                                                                                               | Į                                  | ļ              | Į                                 | l          |
| 6.778                                                                    |                                         |          |                                                                                                                                               | ļ                                  |                |                                   |            |
| 6.774                                                                    |                                         |          |                                                                                                                                               |                                    |                |                                   |            |
| 6.772                                                                    |                                         |          | 20 7 10 - 1                                                                                                                                   |                                    | Section and    |                                   | C. HERE    |
| 6.770                                                                    |                                         |          |                                                                                                                                               |                                    |                |                                   |            |
| 6.768 -                                                                  |                                         |          | 07-57                                                                                                                                         | and a                              |                | -                                 |            |
| 6.766 2 17 32 47 62 77                                                   | 92 107 122                              | 137 100  | -                                                                                                                                             | 0                                  |                |                                   |            |





EVS-Compass® Ver 9.20 © 1995 - 2020 WebCorr Corrosion Consulting Services, Singapore

Figure 12 EVS-Compass predicts pitting corrosion of carbon steel in natural seawater with EVS extrapolation in space and in time.

The powerful applications of EVS-Compass are truly unlimited in engineering design, materials selection,

process operation, inspection and maintenance, corrosion modeling and corrosion life prediction of

structures and plant assets.

Click here to contact us for licensing details and experience the power of EVS-Compass.

EVS-Compass, giving you the right directions in the Corrosion Modeling and Life Prediction of Structures and

Plant Assets

Home | Contact Us | PDF

Copyright  ${m C}$  1995-2020. All rights reserved.