

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Protective Coatings | Materials Selection | Cathodic Protection | >>>

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support | CorrCompass

CP-Compass has the following standalone modules:

- CP-Compass-Underground Pipelines
- CP-Compass-Submarine Pipelines
- CP-Compass-Platforms
- CP-Compass-FPSO
- CP-Compass-Well Casing
- CP-Compass-Jetty Piles
- CP-Compass-Storage Tanks
- CP-Compass-Concrete Structures
- CP-Compass-Condensers & Heat Exchanger

• CP-Compass-Customized for Special Needs

Design calculations in CP-Compass modules are in compliance with internationally accepted codes and standards such as AS 2239, AS 2832,

BS EN ISO 12696, BS EN 12473, BS ISO 15589, DNV-RP-B401, DNV-RP-F103, NACE SP0169, and NACE SP0176.

Unparalleled Functionality: CP-Compass is not just for CP design and verification of CP design calculations by 3rd party contractors, it also

gives you tools to assess the actual level of cathodic protection achieved (corrosion rate reduction factor) and to predict the corrosion rate

of the structure WHEN CP IS ON! Refer to the screen shot below for details.

Unmatched Usability: CP-Compass was designed with the user in mind. Experience the industry's first cross-platform and deviceindependent Cathodic Protection Design, Verification and Assessment application on your iPads, tablets, smart phones, notebooks and desktops, at any time and anywhere, in the office or in the field. No installation files to download, no browser plug-ins required, no USB dongles to carry around, and no license keys to transfer from one PC to another. **CP-Compass simply works on any device running any OS**. All you need is an internet browser.

A Brief Overview of CP-Compass-Underground Pipelines

ICCP

Galvanic Anode CP

Corrosion Rate Tools

Desig	n Calculation for Galva	anic Anode Cathodic	Protection of Buried Pipelines		Version 12.4.8		
Client:		PO#201706					
Project:	Enter project title for	reference			25-Jan-2010		
Design Life, year		20	Anode Material		Zn	~	
Steel Grade		API X65	Anode Potential, V(CSE)		-1.100		
Pipe OD, mm		273.10	Driving Voltage, V	0.250			
Pipe Length, m		30,000	Anode Length (packaged), mm		1,549		
Pipe Surface Area, m ²		25,739	Anode Diameter (packaged), mm	152			
Coating Breakdown Factor		5%	Anode Weight (Bare), kg		14.500		
Soil Resistivity, Ω.cm		1,500	Anode Consumption Rate, kg/A-y		10.76		
Design Current Density, mA/m ²		22.0	Current Efficiency		0.90		
Protection Potential, V(CSE)		-0.850	Utilization Factor		0.85		
CP Current and Anode V	Weight Requirements						
CP Current Required, A		28.313	Total Anode Weight Required, kg		7,965		
			Number of Anode by Weight		549.3		
Anode Current Output			Vertical Installation	~			
Anode to Earth Resistar	nce, Ω	5.242	Single Anode Current Output, mA		47.696		
Anode Burial Depth, cm	1	200	Number of Anodes by Current		593.6		
Number of Anodes Sele	ected	594	Calculated Anode Life, year		22		
	The numbe	er of anodes selected	I meets the design life requirement.				

Figure 1 Galvanic anode cathodic protection design and verification using CP-Compass software

Galvanic Anode CP Design and Verification

Unlike other cathodic protection design software developed by computer programmers that requires users to be trained as an application

specialist in order to operate the software, WebCorr's CP-Compass software was developed by corrosion engineers for corrosion engineers

with no learning curve required. With CP-Compass, designing a cathodic protection system or verifying a CP design by a 3rd party contractor

is as easy as 1-2-3:

1. Enter the design parameters (items in the above screen shot).

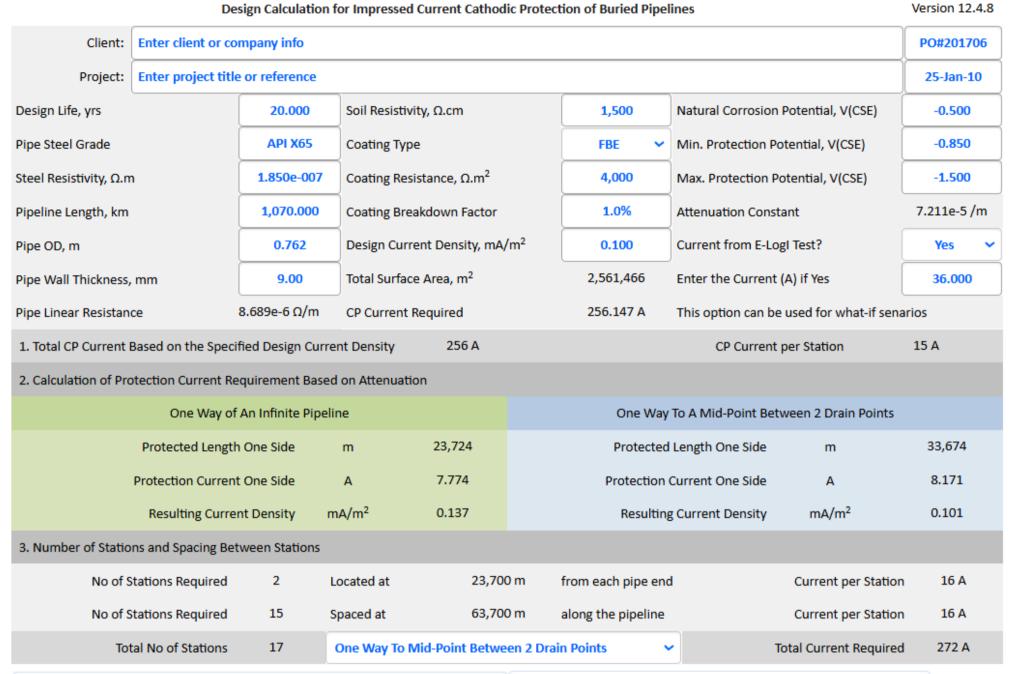
2. Choose the anode from the dropdown list.

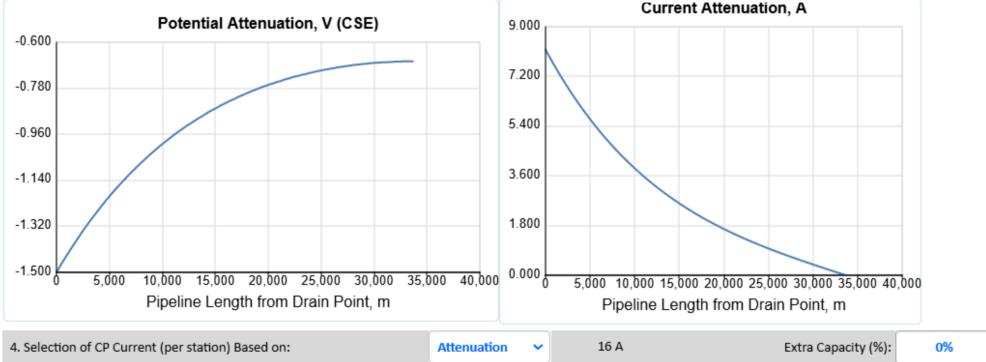
3. The number of anode required, the the anode life, and system design life are automatically determined and verified.

Impressed Current CP Design and Verification

Advanced features of CP-Compass for impressed current cathodic protection design and verification include:

- 1. calculation of cathodic protection current requirement based on attenuation,
- 2. calculation of the number of stations and the spacing between stations,
- 3. calculation of the CP current requirement per station with plots showings potential attenuation and current attenuation,
- 4. anode selection and groundbed design,
- 5. rectifier output rating


6. calculation of the separation distance between the anode groundbed and the pipeline with a plot showing the percent of voltage rise vs. distance from anode groundbed,


7. recommended separation distance between the anode groundbed and the pipeline

Impressed Current CP design and verification are shown in the screen shot below:

ICCP

5. Anode Selection and Groundbed Design					
Design Life	yrs	20	Anode Material Selected		HSCI 🗸
Total Capacity Required	A-y	320.000	Net Weight of Single Anod	e kg	14.300
Single Anode Output	А	5.000	Anodes Consumption Rat	e kg/A-y	0.227
Single Anode Capacity	А-у	47.247	Anode Utilization Facto	or	0.75
If not known, ente	r data on the r	ight to calculate =>	Single Anode Capacit	у А-у	47.247
Number of Anode	s Required	6.77	The number of anodes selected meets the	design life requirement	t.
Number of Anode	s Selected:	7	Current Output: 16.536 A Sy	vstem Life: 21 yrs	
Shallow Anode Groun	dbed Design	Vertical 🗸	Deep Well Anode G	roundbed Design	
Anode Length (incl. backfill)	cm	243.84	Groundbed Diamete	r cm	20.00
Anode Diameter (incl. backfill)	cm	30.48	Coke Consumption Rat	e kg/A-y	0.9988
Anode Spacing	cm	500.00	Coke Utilization Facto	r	0.50
Anode Burial Depth	cm	200.00	Coke Length by Consumptio	n m	20.35
Single Anode Resistance	Ω	3.093	Coke Length by Current Lim	it m	16.45
Groundbed Resistance	Ω	0.650	Coke Column Length Selecte	d m	21
Pipe Resistance to Earth	Ω	0.061	Anode Spacin	g cm	300
Cable Resistance per km	Ω/km	0.833	Groundbed Drilling Dept	h m	41
Cable Length	m	150	Pipe Resistance to Eart	h Ω	0.061
Cable Resistance	Ω	0.125	Groundbed Resistance	e Ω	0.652
Total Circuit Resistance	Ω	0.836	Total Circuit Resistanc	e Ω	0.838
Rectifier Output Ratir	g		Rectifier Out	put Rating	
Back Voltage	v	2.000	Back Voltag	e V	2.000
TR Voltage Output Rating	v	16	TR Voltage Output Ratin	g V	16
TR Current Output Rating	А	17	TR Current Output Ratin	g A	17

6. Separation Distance of Anode Groundbed from Pipeline

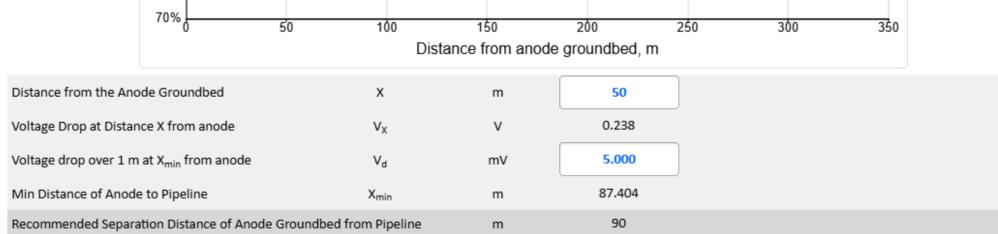
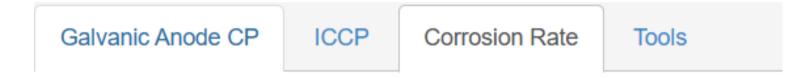



Figure 2 Impressed current cathodic protection design and verification using CP-Compass software

Current and potential attenuation are calculated automatically to give you the most realistic estimation of the number of anode groundbeds required (see plots under Section 3 in Figure 2).

The separation distance between the anode groundbed and the structure is automatically optimized based on the user specified acceptable voltage drop (see plot under Section 6 in Figure 2).

The corrosion rate of the structure when CP is on can be calculated based on the polarization measurements, as shown in the screen shot below:

Effect of Cathodic Protection on Corrosion Rate

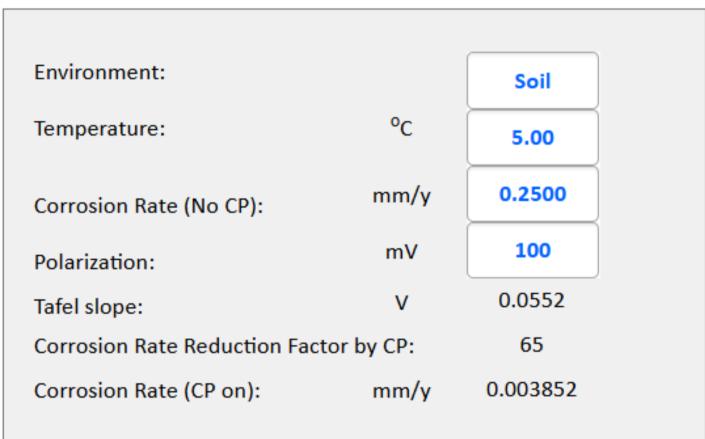


Figure 3 Assessing the degree of CP protection using CP-Compass software

This unique function not found in any other CP design software allows users of CP-Compass to assess the degree of CP protection on an existing structure based on the CP survey results (the polarization data). It also allows the designer to set the CP criteria (e.g., 100 mV or 150 mV) to meet the corrosion rate target when CP is on.

The "Tools" menu in CP-Compass allows users to perform design calculations for any CP system for any structure.

	.		_	
Electrode (Half - Cell)	Name	Potential (Volts)		
Copper - Copper Sulfate (Cu-Cu SO4)	CSE	0		
Silver - Silver Chloride (Saturated)	Ag-AgCl	-0.05		
Saturated Calomel	SCE	-0.07		
Zinc (Pure Zinc)	Zn	-1.1		
Sacrificial And	ode Efficiency a	nd Utilization Factor		
Magnesium : $L_M = \frac{C_a * W}{M}$	$\frac{F}{I} = \frac{F}{I}$			
Magnesium : $L_M = \frac{C_a * W}{Ca}$ Ca = Electrochemical Capacity (A-y/kg)	$\frac{F * E * U_F}{I}$		Ca =	0.250
	$\frac{F}{I}$		Ca = W =	0.250 109.000
Ca = Electrochemical Capacity (A-y/kg)	<u>* E * U_F</u> I			
Ca = Electrochemical Capacity (A-y/kg) W = Weight of Anode (kg)	<u>* E * U_F</u> I		W =	109.000
Ca = Electrochemical Capacity (A-y/kg) W = Weight of Anode (kg) E = Current Efficiency	<u>* E * U_F</u> I		W = E =	109.000 0.5

Figure 4 CP-Compass software has tools for users to perform design calculations for any CP system for any structure.

Click here to contact us for licensing details and experience the power of CP-Compass.

CP-Compass, giving you the right directions in the design and operation of cathodic protection.

Home | Contact Us | PDF

Copyright © 1995-2024. All rights reserved.

7