

Home | Consulting | Training | Expert Witness | Failure Analysis | Design Review | Corrosion Test | Corrosion Software | Protective Coatings | Materials

☆ Performance ☆ Functionality ☆ Usability
Anytime Anywhere Any Device Any OS
No USB dongles No installation No Browser Plug-ins

Why WebCorr | Performance Guarantee | Unparalleled Functionality | Unmatched Usability | Any Device Any OS | Free Training & Support | CorrCompass

CP-Compass has the following standalone modules:

- CP-Compass-Underground pipeline
- CP-Compass-Submarine pipeline
- CP-Compass-Platform
- CP-Compass-FPSO
- CP-Compass-Well casing
- CP-Compass-Jetty pile
- CP-Compass-Storage tanks
- CP-Compass-Concrete structure
- CP-Compass-Condensers & heat exchanger
- CP-Compass-Customized for special need

Design calculations in CP-Compass modules are in compliance with internationally accepted codes and standards: AS 2239; AS 2832; BS EN ISO 12696; BS EN 12473; BS ISO 15589; DNV-RP-B401; DNV-RP-F103; NACE SP0169; NACE SP0176.

Our NACE certified Corrosion Specialist will review and endorse all CP designs based on CP-Compass at no charge to licensed users.

Unparalleled Functionality: CP-Compass is not just for CP design and verification of CP design calculations by 3rd party contractors, it also gives you tools to predict the corrosion rate of the structure WHEN CP IS ON! Refer to the screen shot below for details.

Unmatched Usability: CP-Compass was designed with the user in mind. Experience the industry's first cross-platform and device-independent Cathodic Protection Design, Verification

and Assessment application on your iPads, tablets, smart phones, notebooks and desktops, at any time and anywhere, in the office or in the field. No installation files to download, no browser plug-ins required, no USB dongles to carry around, and no license keys to transfer from one PC to another. **CP-Compass simply works on any device running any OS**. All you need is an internet browser.

Galvanic	Anode CP ICC	P Corros	sion Rate Tools About	
	Design Calculation fo	r Galvanic And	de Cathodic Protection of Buried Pip	elines
Client:	ABC Company			PO#201706
Project:	XYZ Pipeline Cathodi	c Protection		1/25/2010
	Design Life, yrs	20	Anode Material	Zn 🗸
	Steel Grade	API X65	Anode Potential	-1.10 V(CSE)
	Pipe OD, mm	273.10	Driving Voltage	0.250 V
	Pipe Length, m	30,000	Anode Length (packaged), mm	1,549
	Pipe Surface Area	25,739 m2	Anode Diameter (packaged), mm	152
Co	ating breakdown factor	5%	Anode Weight (Bare), kg	14.500
	Soil Resistivity, Ω.cm	1,500	Anode Consumption Rate, kg/A-y	10.76
Design C	urrent Density, mA/m2	22.0	Current Efficiency	0.90
Prote	ection Potential, V(CSE)	-0.850	Utilization Factor	0.85
	CP (Current and An	ode Weight Requirements	
	CP Current Required	28.313 A	Total Anode Weight Required	7,965 kg
			Number of Anodes by Weight	549.3
	Anode Cu	rrent Output	Vertical Installation	
And	ode to Earth Resistance	5.242 Ω	Anode Current Output	47.696 mA
	Anode Burial Depth	200 cm	Number of Anodes by Current	593.6
Num	ber of Anodes Selected	594	Anode Life Calculation	22 yrs
	The number of	anodes selecte	ed meets the design life requirement.	

A Brief Overview of CP-Compass-Underground pipeline

Galvanic Anode CP Design and Verification

With CP-Compass, designing a galvanic anode CP system or verifying a CP design by a 3rd party contractor is as easy as 1-2-3:

- 1. Enter the design parameters (items in the above screen shot).
- 2. Choose the anode from the dropdown list.
- 3. The number of anode required, the the anode life, and system design life are automatically determined and verified.

Impressed Current CP Design and Verification

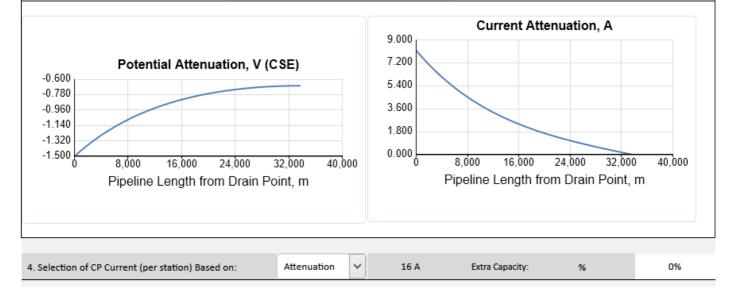
Impressed Current CP design and verification are shown in the screen shot below:

Corrosion Rate T

ite Tools About

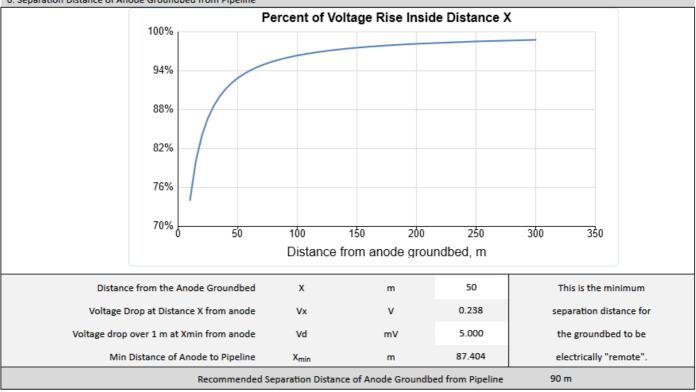
Design Calculation for Impressed Current Cathodic Protection of Buried Pipelines

Client: A	BC Oil and Gas	Company				PO#201706
Project: X	YZ Oil and Gas F	Pipeline Cathodio	c Protection			1/25/2010
D	Design Life, yrs	20	Soil Resistivity, Ω.cm	1,500	Natural Corrosion Potential, V(CSE)	-0.500
Pip	e Steel Grade	API X65	Coating Type	FBE 🗸	Minimum Protection Potential, V(CSE)	-0.850
Steel Re	esistivity, Ω.m	1.850e-007	Coating Resistance, Ω .m2	4,000	Maximum Protection Potential, V(CSE)	-1.500
Pipelir	ne Length, km	1,070.000	Coating Breakdown Factor	1.0%	Attenuation constant	7.211e-5 /m
	Pipe OD, m	0.762	Design Current Density, mA/m2	0.100	Current from E-LogI Test?	Yes 🗸
Pipe Wall T	hickness, mm	9.00	Total Surface Area	2,561,466 m2	Enter current (A) if Yes	36.000
Pipe Line	ear Resistance	8.689e-6 Ω/m	CP Current Required	256.147 A	This option can be used for what-i	fsenarios
1. Total CP Cu	urrent Based on	the Specified De	sign Current Density	256 A	CP Current per Station	15 A


2. Calculation of Protection Current Requirement Based on Attenuation

ICCP

One Way of An Infinite I	Pipeline		One Way To A Mid-Point B	Between 2 Drain F	Points
Protected Length One Side	m	23,724	Protected Length One Side	m	33,674
Protection Current One Side	Α	7.774	Protection Current One Side	А	8.171
Resulting Current Density	mA/m2	0.137	Resulting Current Density	mA/m2	0.101


3. Number of Stations and Spacing Between Stations

No of Stations Required	2	Located at	23,700 m	from pipe end	Current per Station	16 A
No of Stations Required	15	Spaced at	63,700 m	along the pipeline	Current per Station	16 A
Total No of Stations	17	One Way To	Mid-Point Betw	een 2 Drain Points 🗸	Total Current Required	272 A

5. Anode Selection and Groundbed Design					
Design Life	yrs	20	Anode Material Selected		HSCI
Total Capacity Required	А-у	320.000	Net Weight of Single Anode	kg	14.300
Single Anode Output	Α	5.000	Anodes Consumption Rate	kg/A-y	0.227
Single Anode Capacity	А-у	47.247	Anode Utilization Factor		0.75
If not known, enter	data on the	right to calculate =	> Single Anode Capacity	A-y	47.247
Number of Anode Required	6.77		The number of anodes select	ed meets the design	life requiremen
Number of Anodes Selected:	7	Current Output:	16.536 A System Life: 21	yrs	
Shallow Anode Groundbe	ed Design	Vertical 🗸	Deep Well Anode	Groundbed Design	
Anode Length (incl. backfill)	cm	243.84	Groundbed Diameter	cm	20.00
Anode Diameter (incl. backfill)	cm	30.48	Coke Consumption Rate	kg/A-y	0.9988
Anode Spacing	cm	500.00	Coke Utilization Factor		0.50
Anode Burial Depth	cm	200.00	Coke Length by Consumption	m	20.35
Single Anode Resistance	Ω	3.093	Coke Length by Current Limit	m	16.45
Groundbed Resistance	Ω	0.650	Coke Column Length Selected	m	21
Pipe Resistance to Earth	Ω	0.061	Anode Spacing	cm	300
Cable Resistance per km	Ω/km	0.833	Groundbed Drilling Depth	m	41
Cable Length	m	150	Pipe Resistance to Earth	Ω	0.061
Cable Resistance	Ω	0.125	Groundbed Resistance	Ω	0.652
Total Circuit Resistance	Ω	0.836	Total Circuit Resistance	Ω	0.838
Rectifier Output Rat	ting	-	Rectifier Ou	tput Rating	
Back Voltage	v	2.000	Back Voltage	V	2.000
TR Voltage Output Rating	v	16	TR Voltage Output Rating	V	16
TR Current Output Rating	А	17	TR Current Output Rating	А	17

6. Separation Distance of Anode Groundbed from Pipeline

Current and potential attenuation are calculated automatically to give you the most realistic estimation of the number of anode groundbeds required (see plots under Section 3 above).

The separation distance between the anode groundbed and the structure is automatically optimized based on the user specified acceptable voltage drop (see plot under Section 6).

The corrosion rate of the structure when CP is on can be calculated based on the polarization measurements, as shown in the screen shot below:

Effect of Cathodic Protec	ction on Corro	sion Rate	
Environment:		Soil	
Temperature:	oC	5	
Corrosion Rate (No CP):	mm/y	0.1500	
Polarization:	mV	100	
Tafel slope:	V	0.0552	
CorrRate Reduction factor:		65	
Corrosion Rate (CP on):	mm/y	0.002311	

This unique function not found in any other CP design software allows users of CP-Compass to assess the degree of CP protection on an existing structure based on the CP survey results (the polarization data). It also allows the designer to set the CP criteria (e.g., 100 mV or 150 mV) to meet the corrosion rate target when CP is on.

The "Tools" menu in CP-Compass allows users to perform design calculations for any CP system for any structure.

Electrode (Half - Cell)	Name	Potential (Volts)	7	
Copper - Copper Sulfate (Cu-Cu SO4)	CSE	0	1	
Silver - Silver Chloride (Saturated)	Ag-AgCl	-0.05		
Saturated Calomel	SCE	-0.07		
Zinc (Pure Zinc)	Zn	-1.1		
Sacrificial And	ode Efficiency a	nd Utilization Factor		
Magnesium : $L_M = \frac{C_a * W}{M}$	$\frac{*E*U_F}{I}$			
	$\frac{E * U_F}{I}$		Ca =	0.250
Magnesium : $L_M = \frac{C_a + W}{C_a + W}$ Ca = Electrochemical Capacity (A-y/kg) W = Weight of Anode (kg)	$\frac{E U_F}{I}$		Ca = W =	0.250
Ca = Electrochemical Capacity (A-y/kg)	$\frac{E U_F}{I}$			
Ca = Electrochemical Capacity (A-y/kg) W = Weight of Anode (kg)	$\frac{E U_F}{I}$		W =	109.000
Ca = Electrochemical Capacity (A-y/kg) W = Weight of Anode (kg) E = Current Efficiency	$\frac{E U_F}{I}$		W = E =	109.000 0.5

CP-Compass, giving you the right directions in the design and operation of cathodic protection.

Home | Contact Us | PDF

Copyright $ilde{C}$ 1995-2021. All rights reserved.